TY - JOUR T1 - On Generalized $PST$-Groups AU - Wang , Junxin JO - Communications in Mathematical Research VL - 4 SP - 360 EP - 368 PY - 2021 DA - 2021/05 SN - 27 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19078.html KW - $s$-permutable subgroup, power automorphism, $PST$-group. AB -
A finite group $G$ is called a generalized $PST$-group if every subgroup contained in $F(G)$ permutes all Sylow subgroups of $G$, where $F(G)$ is the Fitting subgroup of $G.$ The class of generalized $PST$-groups is not subgroup and quotient group closed, and it properly contains the class of $PST$-groups. In this paper, the structure of generalized $PST$-groups is first investigated. Then, with its help, groups whose every subgroup (or every quotient group) is a generalized $PST$-group are determined, and it is shown that such groups are precisely $PST$-groups. As applications, $T$-groups and $PT$-groups are characterized.