TY - JOUR T1 - $T^∗$-Extension of Lie Supertriple Systems AU - Feng , Jianqiang JO - Communications in Mathematical Research VL - 1 SP - 51 EP - 59 PY - 2021 DA - 2021/05 SN - 30 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/18987.html KW - pseudo-metrised Lie supertriple system, metrised Lie supertriple system, $T^∗$-extension. AB -
In this article, we study the Lie supertriple system (LSTS) $T$ over a field $\mathbb{K}$ admitting a nondegenerate invariant supersymmetric bilinear form (call such a $T$ metrisable). We give the definition of $T^∗_ω$-extension of an LSTS $T$, prove a necessary and sufficient condition for a metrised LSTS ($T$, $ϕ$) to be isometric to a $T^∗$-extension of some LSTS, and determine when two $T^∗$-extensions of an LSTS are "same", i.e., they are equivalent or isometrically equivalent.