TY - JOUR T1 - The Dependence Problem for a Class of Polynomial Maps in Dimension Four AU - Jin , Yong AU - Guo , Hongbo JO - Communications in Mathematical Research VL - 4 SP - 289 EP - 294 PY - 2021 DA - 2021/05 SN - 30 DO - http://doi.org/10.13447/j.1674-5647.2014.04.01 UR - https://global-sci.org/intro/article_detail/cmr/18953.html KW - dependence problem, linear dependence, quasi-translation. AB -
Let $h$ be a polynomial in four variables with the singular Hessian $\mathcal{H}h$ and the gradient $∇h$ and $R$ be a nonzero relation of $∇h$. Set $H = ∇R(∇h)$. We prove that the components of $H$ are linearly dependent when $rk\mathcal{H}h ≤ 2$ and give a necessary and sufficient condition for the components of $H$ to be linearly dependent when $rk\mathcal{H}h = 3$.