TY - JOUR T1 - The Representive of Metric Projection on the Finite Codimension Subspace in Banach Space AU - Liang , Xiaobin AU - Huang , Shixiang JO - Communications in Mathematical Research VL - 4 SP - 373 EP - 382 PY - 2021 DA - 2021/05 SN - 31 DO - http://doi.org/10.13447/j.1674-5647.2015.04.09 UR - https://global-sci.org/intro/article_detail/cmr/18920.html KW - $n$-codimension, separation factor $κ$, weakly completely separated. AB -
In the paper we introduce the notions of the separation factor $κ$ and give a representive of metric projection on an $n$-codimension subspace (or an affine set) under certain conditions in Banach space. Further, we obtain the distance formula from any point $x$ to a finite $n$-codimension subspace. Results extend and improve the corresponding results in Hilbert space.