TY - JOUR T1 - On Skew Triangular Matrix Rings AU - Wang , Weiliang AU - Wang , Yao AU - Ren , Yanli JO - Communications in Mathematical Research VL - 3 SP - 259 EP - 271 PY - 2021 DA - 2021/05 SN - 32 DO - http://doi.org/10.13447/j.1674-5647.2016.03.08 UR - https://global-sci.org/intro/article_detail/cmr/18897.html KW - skew triangular matrix ring, skew polynomial ring, weak zip property, strongly prime radical, generalized prime radical. AB -
Let $α$ be a nonzero endomorphism of a ring $R$, $n$ be a positive integer and $T_n(R, α)$ be the skew triangular matrix ring. We show that some properties related to nilpotent elements of $R$ are inherited by $T_n(R, α)$. Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring $R[x; α]/(x^n)$, where $R[x; α]$ is the skew polynomial ring.