TY - JOUR T1 - Asymptotic Eigenvalue Estimation for a Class of Structured Matrices AU - Liang , Juan AU - Lai , Jiangzhou AU - Niu , Qiang JO - Annals of Applied Mathematics VL - 2 SP - 152 EP - 158 PY - 2020 DA - 2020/08 SN - 35 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/aam/18074.html KW - Toeplitz matrix, eigenvalue, rank-one modification, trace. AB -
In this paper we consider eigenvalue asymptotic estimations for a class of structured matrices arising from statistical applications. The asymptotic upper bounds of the largest eigenvalue ($λ$max) and the sum of squares of eigenvalues $(\sum\limits_{i=1}^nλ_i^2)$ are derived. Both these bounds are useful in examining the stability of certain Markov process. Numerical examples are provided to illustrate tightness of the bounds.