In this paper finite element approximation of space fractional optimal control problem with integral state constraint is investigated. First order optimal condition and regularity of the control problem are discussed. A priori error estimates for control, state, adjoint state and lagrange multiplier are derived. The nonlocal property of the fractional derivative results in a dense coefficient matrix of the discrete state and adjoint state equation. To reduce the computational cost a fast projection gradient algorithm is developed based on the Toeplitz structure of the coefficient matrix. Numerical experiments are carried out to illustrate the theoretical findings.