TY - JOUR T1 - Extremal Functions for Adams Inequalities in Dimension Four AU - Li , Xiaomeng JO - Journal of Partial Differential Equations VL - 2 SP - 171 EP - 192 PY - 2020 DA - 2020/05 SN - 33 DO - http://doi.org/10.4208/jpde.v33.n2.6 UR - https://global-sci.org/intro/article_detail/jpde/16858.html KW - Adams inequality, Trudinger-Moser inequality, extremal function, blow-up analysis. AB -

Let $\Omega\subset \mathbb{R}^4$ be a smooth bounded domain, $W_0^{2,2}(\Omega)$ be the usual Sobolev space. For any positive integer $\ell$, $\lambda_{\ell}(\Omega)$ is the $\ell$-th eigenvalue of the bi-Laplacian operator. Define $E_{\ell}=E_{\lambda_1(\Omega)}\oplus E_{\lambda_2(\Omega)}\oplus\cdots\oplus E_{\lambda_{\ell}(\Omega)}$, where $E_{\lambda_i(\Omega)}$ is eigenfunction space associated with $\lambda_i(\Omega)$. $E^{\bot}_{\ell}$ denotes the orthogonal complement of $E_\ell$ in $W_0^{2,2}(\Omega)$. For $0\leq\alpha<\lambda_{\ell+1}(\Omega)$, we define a norm by $\|u\|_{2,\alpha}^{2}=\|\Delta u\|^2_2-\alpha \|u\|^2_2$ for $u\in E^\bot_{\ell}$. In this paper, using the blow-up analysis, we prove the following Adams inequalities

$$\sup_{u\in E_{\ell}^{\bot},\,\| u\|_{2,\alpha}\leq 1}\int_{\Omega}e^{32\pi^2u^2}{\rm d}x<+\infty;$$

moreover, the above supremum can be attained by a function $u_0\in E_{\ell}^{\bot}\cap C^4(\overline{\Omega})$ with $\|u_0\|_{2,\alpha}=1$. This result extends that of Yang (J. Differential Equations, 2015), and complements that of Lu and Yang (Adv. Math. 2009) and Nguyen (arXiv: 1701.08249, 2017).