TY - JOUR T1 - Third Hankel Determinant for the Inverse of Starlike and Convex Functions AU - Guo , Dong AU - Ao , En AU - Tang , Huo AU - Xiong , Liangpeng JO - Communications in Mathematical Research VL - 4 SP - 354 EP - 358 PY - 2019 DA - 2019/12 SN - 35 DO - http://doi.org/10.13447/j.1674-5647.2019.04.07 UR - https://global-sci.org/intro/article_detail/cmr/13563.html KW - analytic function, third Hankel determinant, inverse of starlike function, inverse of convex function. AB -
Denote $\cal S$ to be the class of functions which are analytic, normalized and univalent in the open unit disk $\mathbb U=\{z\colon |z|<1\}$. The important subclasses of $\cal S$ are the class of starlike and convex functions, which we denote by $\cal S^*$ and $\cal C$. In this paper, we obtain the third Hankel determinant for the inverse of functions $f(z)=z+\sum\limits_{n=2}^{\infty}a_nz^n$ belonging to $\cal S^*$ and $\cal C$.