TY - JOUR T1 - Location of Zeros for the Weak Solution to a $p$-Ginzburg-Landau Problem AU - Zhan , Desheng JO - Communications in Mathematical Research VL - 4 SP - 363 EP - 370 PY - 2019 DA - 2019/12 SN - 34 DO - http://doi.org/10.13447/j.1674-5647.2018.04.09 UR - https://global-sci.org/intro/article_detail/cmr/13511.html KW - $p$-Ginzburg-Landau equation, initial-boundary value problem, location of zero AB -
This paper is concerned with the asymptotic behavior of the solution $u_\varepsilon$ of a $p$-Ginzburg-Landau system with the radial initial-boundary data. The author proves that the zeros of $u_\varepsilon$ in the parabolic domain $B_1(0)\times (0,\,T]$ locate near the axial line $\{0\}\times(0,\,T]$. In particular, all the zeros converge to this axial line when the parameter $\varepsilon$ goes to zero.