TY - JOUR T1 - Effective Time Step Analysis of a Nonlinear Convex Splitting Scheme for the Cahn–Hilliard Equation AU - Seunggyu Lee & Junseok Kim JO - Communications in Computational Physics VL - 2 SP - 448 EP - 460 PY - 2018 DA - 2018/10 SN - 25 DO - http://doi.org/10.4208/cicp.OA-2017-0260 UR - https://global-sci.org/intro/article_detail/cicp/12758.html KW - Cahn–Hilliard equation, convex splitting, effective time step, Fourier analysis. AB -
We analyze the effective time step size of a nonlinear convex splitting scheme for the Cahn–Hilliard (CH) equation. The convex splitting scheme is unconditionally stable, which implies we can use arbitrary large time-steps and get stable numerical solutions. However, if we use a too large time-step, then we have not only discretization error but also time-step rescaling problem. In this paper, we show the time-step rescaling problem from the convex splitting scheme by comparing with a fully implicit scheme for the CH equation. We perform various test problems. The computation results confirm the time-step rescaling problem and suggest that we need to use small enough time-step sizes for the accurate computational results.