TY - JOUR T1 - Analysis of a Streamline-Diffusion Finite Element Method on Bakhvalov-Shishkin Mesh for Singularly Perturbed Problem AU - Yunhui Yin, Peng zhu & Bin Wang JO - Numerical Mathematics: Theory, Methods and Applications VL - 1 SP - 44 EP - 64 PY - 2017 DA - 2017/10 SN - 10 DO - http://doi.org/10.4208/nmtma.2017.y13026 UR - https://global-sci.org/intro/article_detail/nmtma/12335.html KW - AB -
In this paper, a bilinear Streamline-Diffusion finite element method on Bakhvalov-Shishkin mesh for singularly perturbed convection-diffusion problem is analyzed. The method is shown to be convergent uniformly in the perturbation parameter $ϵ$ provided only that $ϵ ≤ N^{−1}$. An $\mathcal{O}(N^{−2}$(ln$N$)$^{1/2}$) convergent rate in a discrete streamline-diffusion norm is established under certain regularity assumptions. Finally, through numerical experiments, we verified the theoretical results.