TY - JOUR T1 - Superconvergence Analysis of Bilinear Finite Element for the Nonlinear Schrödinger Equation on the Rectangular Mesh AU - Tian , Zhikun AU - Chen , Yanping AU - Wang , Jianyun JO - Advances in Applied Mathematics and Mechanics VL - 2 SP - 468 EP - 484 PY - 2018 DA - 2018/10 SN - 10 DO - http://doi.org/10.4208/aamm.OA-2017-0156 UR - https://global-sci.org/intro/article_detail/aamm/12221.html KW - Finite element method, nonlinear Schrödinger equation, superconvergence, interpolation post-processing. AB -
In this paper, we investigate the superconvergence property of a time-dependent nonlinear Schrödinger equation with the bilinear finite element method on the rectangular mesh. We prove the superclose error estimate in $H^1$-norm with order $\mathcal{O}(h^2)$ between the approximated solution and the elliptic projection of the exact solution. Moreover, we obtain the global superconvergence result in $H^1$-norm with order $\mathcal{O}(h^2)$ by the interpolation post-processing operator.