TY - JOUR T1 - An Inverse Source Problem with Sparsity Constraint for the Time-Fractional Diffusion Equation AU - Ruan , Zhousheng AU - Yang , Zhijian AU - Lu , Xiliang JO - Advances in Applied Mathematics and Mechanics VL - 1 SP - 1 EP - 18 PY - 2018 DA - 2018/05 SN - 8 DO - http://doi.org/10.4208/aamm.2014.m722 UR - https://global-sci.org/intro/article_detail/aamm/12073.html KW - AB -
In this paper, an inverse source problem for the time-fractional diffusion equation is investigated. The observational data is on the final time and the source term is assumed to be temporally independent and with a sparse structure. Here the sparsity is understood with respect to the pixel basis, i.e., the source has a small support. By an elastic-net regularization method, this inverse source problem is formulated into an optimization problem and a semismooth Newton (SSN) algorithm is developed to solve it. A discretization strategy is applied in the numerical realization. Several one- and two- dimensional numerical examples illustrate the efficiency of the proposed method.