TY - JOUR T1 - On Finite Groups Whose Nilpotentisers Are Nilpotent Subgroups AU - Amiri , Seyyed Majid Jafarian AU - Rostami , Hojjat JO - Journal of Mathematical Study VL - 4 SP - 307 EP - 313 PY - 2018 DA - 2018/04 SN - 50 DO - http://doi.org/10.4208/jms.v50n4.17.01 UR - https://global-sci.org/intro/article_detail/jms/11319.html KW - Finite group, nilpotentiser, $\mathcal{N}$-group. AB -
Let $G$ be a finite group and $x ∈ G.$ The nilpotentiser of $x$ in $G$ is defined to be the subset $Nil_G(x) =\{y∈ G :\langle x,y \rangle \ is\ nilpotent\}.$ $G$ is called an $\mathcal{N}$-group ($n$-group) if $Nil_G(x)$ is a subgroup (nilpotent subgroup) of $G$ for all $x ∈ G\setminus Z^∗(G)$ where $Z^∗(G)$ is the hypercenter of $G$. In the present paper, we determine finite $\mathcal{N}$-groups in which the centraliser of each noncentral element is abelian. Also we classify all finite $n$-groups.