TY - JOUR T1 - Existence and Nonexistence for Semilinear Equations on Exterior Domains AU - Iaia , Joseph A. JO - Journal of Partial Differential Equations VL - 4 SP - 299 EP - 316 PY - 2017 DA - 2017/11 SN - 30 DO - http://doi.org/10.4208/jpde.v30.n4.2 UR - https://global-sci.org/intro/article_detail/jpde/10676.html KW - Semilinear KW - hilltop AB -
In this paper we prove the existence of an infinite number of radial solutions of $\Delta u + K(r)f(u)= 0$ on the exterior of the ball of radius $R>0$ centered at the origin in ${\mathbb R}^{N}$ where $f$ is odd with $f<0$ on $(0, \beta) $, $f>0$ on $(\beta, \delta),$ $f\equiv 0$ for $u> \delta$, and where the function $K(r)$ is assumed to be positive and $K(r)\to 0$ as $r \to \infty.$ The primitive $F(u) = \int_{0}^{u} f(s) \, {\rm d}s$ has a ``hilltop'' at $u=\delta$ which allows one to use the shooting method to prove the existence of solutions.