TY - JOUR T1 - Toeplitz Operator Related to Singular Integral with Non-Smooth Kernel on Weighted Morrey Space AU - Y. X. He JO - Analysis in Theory and Applications VL - 3 SP - 240 EP - 252 PY - 2017 DA - 2017/08 SN - 33 DO - http://doi.org/10.4208/ata.2017.v33.n3.5 UR - https://global-sci.org/intro/article_detail/ata/10515.html KW - Toeplitz operator, non-smooth kernel, weighted BMO, fractional integral, weighted Morrey space. AB -

Let $T_{1}$ be a singular integral with non-smooth kernel or $\pm I$, let $T_{2}$  and $T_{4}$ be the linear operators and  let $T_{3}=\pm I$. Denote the Toeplitz type operator by$$T^b=T_{1}M^bI_\alpha T_{2}+T_{3}I_\alpha M^b T_{4},$$where $M^bf=bf,$ and $I_\alpha$ is the fractional integral operator. In this paper, we investigate the boundedness of the operator $T^b$ on the weighted Morrey space when $b$ belongs to the weighted BMO space.