For nonlinear hyperbolic problems, conservation of the numerical scheme is important for convergence to the correct weak solutions. In this paper the conservation of the well-known compact scheme up to fourth order of accuracy on a single and uniform grid is studied, and a conservative interface treatment is derived for compact schemes on patched grids. For a pure initial value problem, the compact scheme is shown to be equivalent to a scheme in the usual conservative form. For the case of a mixed initial boundary value problem, the compact scheme is conservative only if the rounding errors are small enough. For a patched grid interface, a conservative interface condition useful for mesh refinement and for parallel computation is derived and its order of local accuracy is analyzed.