TY - JOUR T1 - A Multigrid Block LU-SGS Algorithm for Euler Equations on Unstructured Grids AU - Ruo Li, Xin Wang & Weibo Zhao JO - Numerical Mathematics: Theory, Methods and Applications VL - 1 SP - 92 EP - 112 PY - 2008 DA - 2008/01 SN - 1 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/nmtma/10112.html KW - Multigrid, block LU-SGS, Euler equations, aerodynamics, airfoil. AB -
We propose an efficient and robust algorithm to solve the steady Euler equations on unstructured grids. The new algorithm is a Newton-iteration method in which each iteration step is a linear multigrid method using block lower-upper symmetric Gauss-Seidel (LU-SGS) iteration as its smoother. To regularize the Jacobian matrix of Newton-iteration, we adopted a local residual dependent regularization as the replacement of the standard time-stepping relaxation technique based on the local CFL number. The proposed method can be extended to high order approximations and three spatial dimensions in a nature way. The solver was tested on a sequence of benchmark problems on both quasi-uniform and local adaptive meshes. The numerical results illustrated the efficiency and robustness of our algorithm.