TY - JOUR T1 - Existence Theorem for a Class of Nonlinear Fourth-order Schrödinger-Kirchhoff-Type Equations. AU - Tang , Shiqiang AU - Chen , Peng AU - Liu , Xiaochun JO - Journal of Partial Differential Equations VL - 2 SP - 146 EP - 164 PY - 2017 DA - 2017/05 SN - 30 DO - http://doi.org/10.4208/jpde.v30.n2.3 UR - https://global-sci.org/intro/article_detail/jpde/10003.html KW - Fourth-order elliptic equations KW - symmetric mountain pass theorem KW - Morse theory AB -
This paper is concerned with the existence of nontrivial solutions for the following fourth-order equations of Kirchhoff type
\begin{equation*}\begin{cases}\Delta^{2}u-\left(a+b\displaystyle\int_{{\mathbb{R}}^N }|\nabla{u}|^2{\rm d}x\right)\Delta{u}+\lambda V(x)u=f(x,u),\quad x\in\mathbb{R}^N ,\\u\in{H^2({\mathbb{R}}^N)},\end{cases}\end{equation*}
where $a,b$ are positive constants, $\lambda \geq 1$ is a parameter, and the nonlinearity $f$ is either superlinear or sublinear at infinity in $u$. With the help of the variational methods, we obtain the existence and multiplicity results in the working spaces.