@Article{JCM-6-348, author = {Wang , Guo-Rong and Lu , Sen-Quan}, title = {Fast Parallel Algorithms for Computing Generalized Inverses $A^+$ and $A_{MN}^+$}, journal = {Journal of Computational Mathematics}, year = {1988}, volume = {6}, number = {4}, pages = {348--354}, abstract = {
The parallel arithmetic complexities for computing generalized inverse $A^+$, computing the minimum-norm least-squares solution of $Ax=b$, computing order $m+n-r$ determinants and finding the characteristic polynomials of order $m+n-r$ matrices are shown to have the same grawth rate. Algorithms are given that compute $A^+$ and $A_{MN}^+$ in $O(\log r\dot \log n+\log m)$ and $O(\log^2n+\log m)$ steps using a number of processors which is a polynomial in $m, \ n$ and $r$ $(A\in B_r^{m\times n},r=rank \ A)$.
}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9523.html} }