@Article{JCM-9-321, author = {Relja Vulanovic}, title = {On Numerical Solution of Quasilinear Boundary Value Problems with Two Small Parameters}, journal = {Journal of Computational Mathematics}, year = {1991}, volume = {9}, number = {4}, pages = {321--329}, abstract = {

We consider the singular perturbation problem $$-\varepsilon^2u"+\mu b(x,u)u'+c(x,u)=0,u(0),u(1)$$ given with two small parameters $\varepsilon$ and $\mu$ , $\mu =\varepsilon^{1+p},p>0$. The problem is solved numerically by using finite difference schemes on the mesh which is dense in the boundary layers. The convergence uniform in $\varepsilon$ is proved in the discrete $L^1$ norm. Some convergence results are given in the maximum norm as well.

}, issn = {1991-7139}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/jcm/9407.html} }