@Article{JCM-28-170, author = {Hale , Elaine T.Yin , Wotao and Zhang , Yin}, title = {Fixed-Point Continuation Applied to Compressed Sensing: Implementation and Numerical Experiments}, journal = {Journal of Computational Mathematics}, year = {2010}, volume = {28}, number = {2}, pages = {170--194}, abstract = {
Fixed-point continuation (FPC) is an approach, based on operator-splitting and continuation, for solving minimization problems with $\ell_1$-regularization:
We investigate the application of this algorithm to compressed sensing signal recovery, in which $f(x) = \frac{1}{2}\|Ax-b\|_M^2$, $A \in \mathbb{R}^{m \times n}$ and $m \leq n$. In particular, we extend the original algorithm to obtain better practical results, derive appropriate choices for $M$ and $\bar{\mu}$ under a given measurement model, and present numerical results for a variety of compressed sensing problems. The numerical results show that the performance of our algorithm compares favorably with that of several recently proposed algorithms.