@Article{CiCP-15-265, author = {Qiuxiang Li, Ning Hong, Baochang Shi and Zhenhua Chai}, title = {Simulation of Power-Law Fluid Flows in Two-Dimensional Square Cavity Using Multi-Relaxation-Time Lattice Boltzmann Method}, journal = {Communications in Computational Physics}, year = {2014}, volume = {15}, number = {1}, pages = {265--284}, abstract = {

In this paper, the power-law fluid flows in a two-dimensional square cavity are investigated in detail with multi-relaxation-time lattice Boltzmann method (MRT-LBM). The influence of the Reynolds number (Re) and the power-law index (n) on the vortex strength, vortex position and velocity distribution are extensively studied. In our numerical simulations, Re is varied from 100 to 10000, and n is ranged from 0.25 to 1.75, covering both cases of shear-thinning and shear-thickening. Compared with the Newtonian fluid, numerical results show that the flow structure and number of vortex of power-law fluid are not only dependent on the Reynolds number, but also related to power-law index.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.160212.210513a}, url = {http://global-sci.org/intro/article_detail/cicp/7095.html} }