@Article{IJNAM-10-481, author = {S. Bajpai, N. Nataraj and A. Pani}, title = {On Fully Discrete Finite Element Schemes for Equations of Motion of Kelvin-Voigt Fluids}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2013}, volume = {10}, number = {2}, pages = {481--507}, abstract = {

In this paper, we study two fully discrete schemes for the equations of motion arising in the Kelvin-Voigt model of viscoelastic fluids. Based on a backward Euler method in time and a finite element method in spatial direction, optimal error estimates which exhibit the exponential decay property in time are derived. In the later part of this article, a second order two step backward difference scheme is applied for temporal discretization and again exponential decay in time for the discrete solution is discussed. Finally, a priori error estimates are derived and results on numerical experiments conforming theoretical results are established.

}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/579.html} }