@Article{ATA-31-381, author = {B. Wu, H. Y. Wang and W. Y. Su}, title = {The Negative Spectrum of Schrödinger Operators with Fractal Potentials}, journal = {Analysis in Theory and Applications}, year = {2017}, volume = {31}, number = {4}, pages = {381--393}, abstract = {

Let $Γ ⊂ \mathbb{R}^2$ be a regular anisotropic fractal. We discuss the problem of the negative spectrum for the Schrödinger operators associated with the formal expression $$H_β =id−∆+βtr^Γ_b, β∈R,$$ acting in the anisotropic Sobolev space $W^{1,α}_2(\mathbb{R}^2)$, where $∆$ is the Dirichlet Laplanian in $\mathbb{R}^2$ and $tr^Γ_b$ is a fractal potential (distribution) supported by $Γ$.

}, issn = {1573-8175}, doi = {https://doi.org/10.4208/ata.2015.v31.n4.4}, url = {http://global-sci.org/intro/article_detail/ata/4646.html} }