@Article{EAJAM-14-874, author = {Zhang , Hui and Dai , Hua}, title = {The Regularized Global GMERR Method for Solving Large-Scale Linear Discrete Ill-Posed Problems}, journal = {East Asian Journal on Applied Mathematics}, year = {2024}, volume = {14}, number = {4}, pages = {874--894}, abstract = {
For the large-scale linear discrete ill-posed problems with multiple right-hand sides, the global Krylov subspace iterative methods have received a lot of attention. In this paper, we analyze the regularizing properties of the global generalized minimum error method (GMERR), and develop a regularized global GMERR method for solving linear discrete ill-posed problems with multiple right-hand sides. The efficiency of the proposed method is confirmed by the numerical experiments on test matrices.
}, issn = {2079-7370}, doi = {https://doi.org/10.4208/eajam.2023-161.081023}, url = {http://global-sci.org/intro/article_detail/eajam/23441.html} }