@Article{CMR-28-313, author = {Gao , YanyanTang , Gaohua and Chen , Jianlong}, title = {On Commuting Graph of Group Ring $Z_nS_3$}, journal = {Communications in Mathematical Research }, year = {2021}, volume = {28}, number = {4}, pages = {313--323}, abstract = {
The commuting graph of an arbitrary ring $R$, denoted by $Γ(R)$, is a graph whose vertices are all non-central elements of $R$, and two distinct vertices $a$ and $b$ are adjacent if and only if $ab = ba$. In this paper, we investigate the connectivity and the diameter of $Γ(Z_n S_3)$. We show that $Γ(Z_n S_3)$ is connected if and only if $n$ is not a prime number. If $Γ(Z_n S_3)$ is connected then diam $(Γ(Z_n S_3)) = 3$, while if $Γ(Z_n S_3)$ is disconnected then every connected component of $Γ(Z_n S_3)$ must be a complete graph with same size, and we completely determine the vertice set of every connected component.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19034.html} }