@Article{JNMA-2-485, author = {Zhou , LinaJiang , Weihua and Li , Qiaoluan}, title = {Eigenvalues of Fourth-Order Singular Sturm-Liouville Boundary Value Problems}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2021}, volume = {2}, number = {4}, pages = {485--493}, abstract = {
In this paper, by using Krasnoselskii's fixed-point theorem, some sufficient conditions of existence of positive solutions for the following fourth-order nonlinear Sturm-Liouville eigenvalue problem:\begin{equation*}\left\{\begin{array}{lll} \frac{1}{p(t)}(p(t)u''')'(t)+ \lambda f(t,u)=0, t\in(0,1), \\ u(0)=u(1)=0, \\ \alpha u''(0)- \beta \lim_{t \rightarrow 0^{+}} p(t)u'''(t)=0, \\ \gamma u''(1)+\delta\lim_{t \rightarrow 1^{-}} p(t)u'''(t)=0, \end{array}\right.\end{equation*} are established, where $\alpha,\beta,\gamma,\delta \geq 0,$ and $~\beta\gamma+\alpha\gamma+\alpha\delta >0$. The function $p$ may be singular at $t=0$ or $1$, and $f$ satisfies Carathéodory condition.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2020.485}, url = {http://global-sci.org/intro/article_detail/jnma/18823.html} }