@Article{CiCP-24-309, author = {Yueling Jia, Song Jiang, Baolin Tian and Eleuterio F. Toro}, title = {A Second-Order Path-Conservative Method for the Compressible Non-Conservative Two-Phase Flow}, journal = {Communications in Computational Physics}, year = {2018}, volume = {24}, number = {2}, pages = {309--331}, abstract = {

A theoretical solution of the Riemann problem to the two-phase flow model in non-conservative form of Saurel and Abgrall is presented under the assumption that all the nonlinear waves are shocks. The solution, called 4-shock Riemann solver, is then utilized to construct a path-conservative scheme for numerical solution of a general initial boundary value problem for the two-phase flow model in the non-conservative form.
Moreover, a high-order path-conservative scheme of Godunov type is given via the MUSCL reconstruction and the Runge-Kutta technique first in one dimension, based on the 4-shock Riemann solver, and then extended to the two-dimensional case by dimensional splitting. A number of numerical tests are carried out and numerical results demonstrate the accuracy and robustness of our scheme in the numerical solution of the five-equations model for two-phase flow.

}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0097}, url = {http://global-sci.org/intro/article_detail/cicp/12242.html} }