Cited by
- BibTex
- RIS
- TXT
Let $L=−∆+V$ be a Schrödinger operator, where $∆$ is the Laplacian on $\mathbb{R}^d$ and the nonnegative potential $V$ belongs to the reverse Hölder class $B_{d/2}.$ In this paper, we define a new version of Carleson measure associated with the fractional heat semigroup of Schrödinger operator $L.$ We will characterize the Campanato spaces and the predual spaces of the Hardy spaces by the new Carleson measure.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2024-0001}, url = {http://global-sci.org/intro/article_detail/cmr/23087.html} }Let $L=−∆+V$ be a Schrödinger operator, where $∆$ is the Laplacian on $\mathbb{R}^d$ and the nonnegative potential $V$ belongs to the reverse Hölder class $B_{d/2}.$ In this paper, we define a new version of Carleson measure associated with the fractional heat semigroup of Schrödinger operator $L.$ We will characterize the Campanato spaces and the predual spaces of the Hardy spaces by the new Carleson measure.