Cited by
- BibTex
- RIS
- TXT
It was proved by Bahouri et al. [9] that the Schrödinger equation on the Heisenberg group $\mathbb{H}^d,$ involving the sublaplacian, is an example of a totally non-dispersive evolution equation: for this reason global dispersive estimates cannot hold. This paper aims at establishing local dispersive estimates on $\mathbb{H}^d$ for the linear Schrödinger equation, by a refined study of the Schrödinger kernel $S_t$ on $\mathbb{H}^d.$ The sharpness of these estimates is discussed through several examples. Our approach, based on the explicit formula of the heat kernel on $\mathbb{H}^d$ derived by Gaveau [19], is achieved by combining complex analysis and Fourier-Heisenberg tools. As a by-product of our results we establish local Strichartz estimates and prove that the kernel $S_t$ concentrates on quantized horizontal hyperplanes of $\mathbb{H}^d.$
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2021-0101}, url = {http://global-sci.org/intro/article_detail/cmr/21076.html} }It was proved by Bahouri et al. [9] that the Schrödinger equation on the Heisenberg group $\mathbb{H}^d,$ involving the sublaplacian, is an example of a totally non-dispersive evolution equation: for this reason global dispersive estimates cannot hold. This paper aims at establishing local dispersive estimates on $\mathbb{H}^d$ for the linear Schrödinger equation, by a refined study of the Schrödinger kernel $S_t$ on $\mathbb{H}^d.$ The sharpness of these estimates is discussed through several examples. Our approach, based on the explicit formula of the heat kernel on $\mathbb{H}^d$ derived by Gaveau [19], is achieved by combining complex analysis and Fourier-Heisenberg tools. As a by-product of our results we establish local Strichartz estimates and prove that the kernel $S_t$ concentrates on quantized horizontal hyperplanes of $\mathbb{H}^d.$