arrow
Volume 25, Issue 4
Blow-up vs. Global Finiteness for an Evolution $p$-Laplace System with Nonlinear Boundary Conditions

Xuesong Wu & Wenjie Gao

Commun. Math. Res., 25 (2009), pp. 309-317.

Published online: 2021-07

Export citation
  • Abstract

In this paper, the authors consider the positive solutions of the system of the evolution $p$-Laplacian equations $$\begin{cases} u_t ={\rm div}(| ∇u |^{p−2} ∇u) + f(u, v), & (x, t) ∈ Ω × (0, T ), & \\ v_t = {\rm div}(| ∇v |^{p−2} ∇v) + g(u, v), & (x, t) ∈ Ω × (0, T) \end{cases}$$with nonlinear boundary conditions $$\frac{∂u}{∂η} = h(u, v), \frac{∂v}{∂η} = s(u, v),$$and the initial data $(u_0, v_0)$, where $Ω$ is a bounded domain in $\boldsymbol{R}^n$ with smooth boundary $∂Ω, p > 2$, $h(· , ·)$ and $s(· , ·)$ are positive $C^1$ functions, nondecreasing in each variable. The authors find conditions on the functions $f, g, h, s$ that prove the global existence or finite time blow-up of positive solutions for every $(u_0, v_0)$.

  • Keywords

nonlinear boundary value problem, evolution p-Laplace system, blow-up.

  • AMS Subject Headings

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CMR-25-309, author = {Xuesong and Wu and and 18171 and and Xuesong Wu and Wenjie and Gao and and 18172 and and Wenjie Gao}, title = {Blow-up vs. Global Finiteness for an Evolution $p$-Laplace System with Nonlinear Boundary Conditions}, journal = {Communications in Mathematical Research }, year = {2021}, volume = {25}, number = {4}, pages = {309--317}, abstract = {

In this paper, the authors consider the positive solutions of the system of the evolution $p$-Laplacian equations $$\begin{cases} u_t ={\rm div}(| ∇u |^{p−2} ∇u) + f(u, v), & (x, t) ∈ Ω × (0, T ), & \\ v_t = {\rm div}(| ∇v |^{p−2} ∇v) + g(u, v), & (x, t) ∈ Ω × (0, T) \end{cases}$$with nonlinear boundary conditions $$\frac{∂u}{∂η} = h(u, v), \frac{∂v}{∂η} = s(u, v),$$and the initial data $(u_0, v_0)$, where $Ω$ is a bounded domain in $\boldsymbol{R}^n$ with smooth boundary $∂Ω, p > 2$, $h(· , ·)$ and $s(· , ·)$ are positive $C^1$ functions, nondecreasing in each variable. The authors find conditions on the functions $f, g, h, s$ that prove the global existence or finite time blow-up of positive solutions for every $(u_0, v_0)$.

}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19348.html} }
TY - JOUR T1 - Blow-up vs. Global Finiteness for an Evolution $p$-Laplace System with Nonlinear Boundary Conditions AU - Wu , Xuesong AU - Gao , Wenjie JO - Communications in Mathematical Research VL - 4 SP - 309 EP - 317 PY - 2021 DA - 2021/07 SN - 25 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19348.html KW - nonlinear boundary value problem, evolution p-Laplace system, blow-up. AB -

In this paper, the authors consider the positive solutions of the system of the evolution $p$-Laplacian equations $$\begin{cases} u_t ={\rm div}(| ∇u |^{p−2} ∇u) + f(u, v), & (x, t) ∈ Ω × (0, T ), & \\ v_t = {\rm div}(| ∇v |^{p−2} ∇v) + g(u, v), & (x, t) ∈ Ω × (0, T) \end{cases}$$with nonlinear boundary conditions $$\frac{∂u}{∂η} = h(u, v), \frac{∂v}{∂η} = s(u, v),$$and the initial data $(u_0, v_0)$, where $Ω$ is a bounded domain in $\boldsymbol{R}^n$ with smooth boundary $∂Ω, p > 2$, $h(· , ·)$ and $s(· , ·)$ are positive $C^1$ functions, nondecreasing in each variable. The authors find conditions on the functions $f, g, h, s$ that prove the global existence or finite time blow-up of positive solutions for every $(u_0, v_0)$.

XuesongWu & WenjieGao. (2021). Blow-up vs. Global Finiteness for an Evolution $p$-Laplace System with Nonlinear Boundary Conditions. Communications in Mathematical Research . 25 (4). 309-317. doi:
Copy to clipboard
The citation has been copied to your clipboard