Cited by
- BibTex
- RIS
- TXT
In this work, we study the gradient projection method for solving a class of stochastic control problems by using a mesh free approximation approach to implement spatial dimension approximation. Our main contribution is to extend the existing gradient projection method to moderate high-dimensional space. The moving least square method and the general radial basis function interpolation method are introduced as showcase methods to demonstrate our computational framework, and rigorous numerical analysis is provided to prove the convergence of our meshfree approximation approach. We also present several numerical experiments to validate the theoretical results of our approach and demonstrate the performance meshfree approximation in solving stochastic optimal control problems.
}, issn = {2707-8523}, doi = {https://doi.org/10.4208/cmr.2021-0022}, url = {http://global-sci.org/intro/article_detail/cmr/19266.html} }In this work, we study the gradient projection method for solving a class of stochastic control problems by using a mesh free approximation approach to implement spatial dimension approximation. Our main contribution is to extend the existing gradient projection method to moderate high-dimensional space. The moving least square method and the general radial basis function interpolation method are introduced as showcase methods to demonstrate our computational framework, and rigorous numerical analysis is provided to prove the convergence of our meshfree approximation approach. We also present several numerical experiments to validate the theoretical results of our approach and demonstrate the performance meshfree approximation in solving stochastic optimal control problems.