arrow
Volume 28, Issue 1
Strong Converse Inequality for the Meyer-König and Zeller-Durrmeyer Operators

Qiulan Qi & Juan Liu

Commun. Math. Res., 28 (2012), pp. 1-9.

Published online: 2021-05

Export citation
  • Abstract

In this paper we give a strong converse inequality of type B in terms of unified $K$-functional $K^α_λ (f, t^2) (0 ≤ λ ≤ 1, 0 < α < 2)$ for the Meyer-König and Zeller-Durrmeyer type operators.

  • AMS Subject Headings

41A25, 41A36, 41A27

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{CMR-28-1, author = {Qi , Qiulan and Liu , Juan}, title = {Strong Converse Inequality for the Meyer-König and Zeller-Durrmeyer Operators}, journal = {Communications in Mathematical Research }, year = {2021}, volume = {28}, number = {1}, pages = {1--9}, abstract = {

In this paper we give a strong converse inequality of type B in terms of unified $K$-functional $K^α_λ (f, t^2) (0 ≤ λ ≤ 1, 0 < α < 2)$ for the Meyer-König and Zeller-Durrmeyer type operators.

}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19060.html} }
TY - JOUR T1 - Strong Converse Inequality for the Meyer-König and Zeller-Durrmeyer Operators AU - Qi , Qiulan AU - Liu , Juan JO - Communications in Mathematical Research VL - 1 SP - 1 EP - 9 PY - 2021 DA - 2021/05 SN - 28 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/cmr/19060.html KW - Meyer-König and Zeller-Durrmeyer type operator, moduli of smoothness, $K$-functional, strong converse inequality, Hölder's inequality. AB -

In this paper we give a strong converse inequality of type B in terms of unified $K$-functional $K^α_λ (f, t^2) (0 ≤ λ ≤ 1, 0 < α < 2)$ for the Meyer-König and Zeller-Durrmeyer type operators.

Qi , Qiulan and Liu , Juan. (2021). Strong Converse Inequality for the Meyer-König and Zeller-Durrmeyer Operators. Communications in Mathematical Research . 28 (1). 1-9. doi:
Copy to clipboard
The citation has been copied to your clipboard