Strong Converse Inequality for the Meyer-König and Zeller-Durrmeyer Operators
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-28-1,
author = {Qi , Qiulan and Liu , Juan},
title = {Strong Converse Inequality for the Meyer-König and Zeller-Durrmeyer Operators},
journal = {Communications in Mathematical Research },
year = {2021},
volume = {28},
number = {1},
pages = {1--9},
abstract = {
In this paper we give a strong converse inequality of type B in terms of unified $K$-functional $K^α_λ (f, t^2) (0 ≤ λ ≤ 1, 0 < α < 2)$ for the Meyer-König and Zeller-Durrmeyer type operators.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19060.html} }
TY - JOUR
T1 - Strong Converse Inequality for the Meyer-König and Zeller-Durrmeyer Operators
AU - Qi , Qiulan
AU - Liu , Juan
JO - Communications in Mathematical Research
VL - 1
SP - 1
EP - 9
PY - 2021
DA - 2021/05
SN - 28
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/cmr/19060.html
KW - Meyer-König and Zeller-Durrmeyer type operator, moduli of smoothness, $K$-functional, strong converse inequality, Hölder's inequality.
AB -
In this paper we give a strong converse inequality of type B in terms of unified $K$-functional $K^α_λ (f, t^2) (0 ≤ λ ≤ 1, 0 < α < 2)$ for the Meyer-König and Zeller-Durrmeyer type operators.
Qi , Qiulan and Liu , Juan. (2021). Strong Converse Inequality for the Meyer-König and Zeller-Durrmeyer Operators.
Communications in Mathematical Research . 28 (1).
1-9.
doi:
Copy to clipboard