Cited by
- BibTex
- RIS
- TXT
In this paper, we consider a Gerber-Shiu discounted penalty function in Sparre Andersen risk process in which claim inter-arrival times have a phase-type (2) distribution, a distribution with a density satisfying a second order linear differential equation. By conditioning on the time and the amount of the first claim, we derive a Laplace transform of the Gerber-Shiu discounted penalty function, and then we consider the joint density function of the surplus prior to ruin and the deficit at ruin and some ruin related problems. Finally, we give a numerical example to illustrate the application of the results.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19036.html} }In this paper, we consider a Gerber-Shiu discounted penalty function in Sparre Andersen risk process in which claim inter-arrival times have a phase-type (2) distribution, a distribution with a density satisfying a second order linear differential equation. By conditioning on the time and the amount of the first claim, we derive a Laplace transform of the Gerber-Shiu discounted penalty function, and then we consider the joint density function of the surplus prior to ruin and the deficit at ruin and some ruin related problems. Finally, we give a numerical example to illustrate the application of the results.