Cited by
- BibTex
- RIS
- TXT
For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the numerical stability region contains the analytic stability region are given. The conditions of oscillations for the Runge-Kutta methods are obtained also. We prove that the Runge-Kutta methods preserve the oscillations of the analytic solution. Moreover, the relationship between stability and oscillations is discussed. Several numerical examples which confirm the results of our analysis are presented.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19018.html} }For differential equations with piecewise constant arguments of advanced type, numerical stability and oscillations of Runge-Kutta methods are investigated. The necessary and sufficient conditions under which the numerical stability region contains the analytic stability region are given. The conditions of oscillations for the Runge-Kutta methods are obtained also. We prove that the Runge-Kutta methods preserve the oscillations of the analytic solution. Moreover, the relationship between stability and oscillations is discussed. Several numerical examples which confirm the results of our analysis are presented.