The Centres of Gravity of Periodic Orbits
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{CMR-29-239,
author = {Sun , Zhe and Hou , Bingzhe},
title = {The Centres of Gravity of Periodic Orbits},
journal = {Communications in Mathematical Research },
year = {2021},
volume = {29},
number = {3},
pages = {239--243},
abstract = {
Let $f : I → I$ be a continuous map. If $P(n, f) = \{x ∈ I; f^n (x) = x \}$ is a finite set for each $n ∈ \boldsymbol{N}$, then there exists an anticentered map topologically conjugate to $f$, which partially answers a question of Kolyada and Snoha. Specially, there exists an anticentered map topologically conjugate to the standard tent map.
}, issn = {2707-8523}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cmr/19007.html} }
TY - JOUR
T1 - The Centres of Gravity of Periodic Orbits
AU - Sun , Zhe
AU - Hou , Bingzhe
JO - Communications in Mathematical Research
VL - 3
SP - 239
EP - 243
PY - 2021
DA - 2021/05
SN - 29
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/cmr/19007.html
KW - periodic orbit, centre of gravity, anticentered map, tent map.
AB -
Let $f : I → I$ be a continuous map. If $P(n, f) = \{x ∈ I; f^n (x) = x \}$ is a finite set for each $n ∈ \boldsymbol{N}$, then there exists an anticentered map topologically conjugate to $f$, which partially answers a question of Kolyada and Snoha. Specially, there exists an anticentered map topologically conjugate to the standard tent map.
Zhe Sun & Bingzhe Hou. (2021). The Centres of Gravity of Periodic Orbits.
Communications in Mathematical Research . 29 (3).
239-243.
doi:
Copy to clipboard