Commun. Math. Res., 35 (2019), pp. 219-224.
Published online: 2019-12
Cited by
- BibTex
- RIS
- TXT
In this paper we apply a new method to choose suitable free parameters of the planar cubic $G^1$ Hermite interpolant. The method provides the cubic $G^1$ Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method.
}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.03.03}, url = {http://global-sci.org/intro/article_detail/cmr/13527.html} }In this paper we apply a new method to choose suitable free parameters of the planar cubic $G^1$ Hermite interpolant. The method provides the cubic $G^1$ Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method.