arrow
Volume 35, Issue 3
Planar Cubic $G^1$ Hermite Interpolant with Minimal Quadratic Oscillation in Average

Juncheng Li

Commun. Math. Res., 35 (2019), pp. 219-224.

Published online: 2019-12

Export citation
  • Abstract

In this paper we apply a new method to choose suitable free parameters of the planar cubic $G^1$ Hermite interpolant. The method provides the cubic $G^1$ Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method. 

  • AMS Subject Headings

65D07, 65D05

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

lijuncheng82@126.com (Juncheng Li)

  • BibTex
  • RIS
  • TXT
@Article{CMR-35-219, author = {Li , Juncheng}, title = {Planar Cubic $G^1$ Hermite Interpolant with Minimal Quadratic Oscillation in Average}, journal = {Communications in Mathematical Research }, year = {2019}, volume = {35}, number = {3}, pages = {219--224}, abstract = {

In this paper we apply a new method to choose suitable free parameters of the planar cubic $G^1$ Hermite interpolant. The method provides the cubic $G^1$ Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method. 

}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2019.03.03}, url = {http://global-sci.org/intro/article_detail/cmr/13527.html} }
TY - JOUR T1 - Planar Cubic $G^1$ Hermite Interpolant with Minimal Quadratic Oscillation in Average AU - Li , Juncheng JO - Communications in Mathematical Research VL - 3 SP - 219 EP - 224 PY - 2019 DA - 2019/12 SN - 35 DO - http://doi.org/10.13447/j.1674-5647.2019.03.03 UR - https://global-sci.org/intro/article_detail/cmr/13527.html KW - cubic Hermite interpolant, free parameter optimization, shape-preserving interpolant AB -

In this paper we apply a new method to choose suitable free parameters of the planar cubic $G^1$ Hermite interpolant. The method provides the cubic $G^1$ Hermite interpolant with minimal quadratic oscillation in average. We can use the method to construct the optimal shape-preserving interpolant. Some numerical examples are presented to illustrate the effectiveness of the method. 

Jun-cheng Li. (2019). Planar Cubic $G^1$ Hermite Interpolant with Minimal Quadratic Oscillation in Average. Communications in Mathematical Research . 35 (3). 219-224. doi:10.13447/j.1674-5647.2019.03.03
Copy to clipboard
The citation has been copied to your clipboard