arrow
Volume 34, Issue 2
On the Group of $p$-Endotrivial $kG$-Modules

Wenlin Huang

Commun. Math. Res., 34 (2018), pp. 106-116.

Published online: 2019-12

Export citation
  • Abstract

In this paper, we define a group $T_p(G)$ of $p$-endotrivial $kG$-modules and a generalized Dade group $D_p(G)$ for a finite group $G$. We prove that $T_p(G)\cong T_p(H)$ whenever the subgroup $H$ contains a normalizer of a Sylow $p$-subgroup of $G$, in this case, $K(G)\cong K(H)$. We also prove that the group $D_p(G)$ can be embedded into $T_p(G)$ as a subgroup.

  • AMS Subject Headings

20C05, 20C20

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

wenlinhuang@163.com (Wenlin Huang)

  • BibTex
  • RIS
  • TXT
@Article{CMR-34-106, author = {Huang , Wenlin}, title = {On the Group of $p$-Endotrivial $kG$-Modules}, journal = {Communications in Mathematical Research }, year = {2019}, volume = {34}, number = {2}, pages = {106--116}, abstract = {

In this paper, we define a group $T_p(G)$ of $p$-endotrivial $kG$-modules and a generalized Dade group $D_p(G)$ for a finite group $G$. We prove that $T_p(G)\cong T_p(H)$ whenever the subgroup $H$ contains a normalizer of a Sylow $p$-subgroup of $G$, in this case, $K(G)\cong K(H)$. We also prove that the group $D_p(G)$ can be embedded into $T_p(G)$ as a subgroup.

}, issn = {2707-8523}, doi = {https://doi.org/10.13447/j.1674-5647.2018.02.02}, url = {http://global-sci.org/intro/article_detail/cmr/13510.html} }
TY - JOUR T1 - On the Group of $p$-Endotrivial $kG$-Modules AU - Huang , Wenlin JO - Communications in Mathematical Research VL - 2 SP - 106 EP - 116 PY - 2019 DA - 2019/12 SN - 34 DO - http://doi.org/10.13447/j.1674-5647.2018.02.02 UR - https://global-sci.org/intro/article_detail/cmr/13510.html KW - $p$-endotrivial module, the group of $p$-endotrivial modules, endo-permutation module, Dade group AB -

In this paper, we define a group $T_p(G)$ of $p$-endotrivial $kG$-modules and a generalized Dade group $D_p(G)$ for a finite group $G$. We prove that $T_p(G)\cong T_p(H)$ whenever the subgroup $H$ contains a normalizer of a Sylow $p$-subgroup of $G$, in this case, $K(G)\cong K(H)$. We also prove that the group $D_p(G)$ can be embedded into $T_p(G)$ as a subgroup.

Huang , Wenlin. (2019). On the Group of $p$-Endotrivial $kG$-Modules. Communications in Mathematical Research . 34 (2). 106-116. doi:10.13447/j.1674-5647.2018.02.02
Copy to clipboard
The citation has been copied to your clipboard