Vol. **49**, No. 1, pp. 50-56 March 2016

On \mathfrak{F}_{τ} -s-supplemented Subgroups of Finite Groups

Yuemei Mao^{1,2,*}and Xiaojian Ma¹

¹ School of Mathematics and Computer, University of Datong, Datong 037009, Shanxi, P. R. China

² School of Mathematical Sciences, University of Science and Technology of China, *Hefei* 230026, Anhui, P. R. China.

Received 20 April 2015; Accepted 9 December 2015

Abstract. Let \mathfrak{F} be a non-empty formation of groups, τ a subgroup functor and H a p-subgroup of a finite group G. Let $\overline{G} = G/H_G$ and $\overline{H} = H/H_G$. We say that H is \mathfrak{F}_{τ} -s-supplemented in G if for some subgroup \overline{T} and some τ -subgroup \overline{S} of \overline{G} contained in \overline{H} , $\overline{H}\overline{T}$ is subnormal in \overline{G} and $\overline{H} \cap \overline{T} \leq \overline{S}Z_{\mathfrak{F}}(\overline{G})$. In this paper, we investigate the influence of \mathfrak{F}_{τ} -s-supplemented subgroups on the structure of finite groups. Some new characterizations about solubility of finite groups are obtained.

AMS subject classifications: 20D10, 20D15, 20D20

Key words: Subnormal subgroup, subgroup functor, soluble group.

1 Introduction

Throughout this paper, all groups considered are finite and *G* always denotes a group, π denotes a set of primes and *p* denotes a prime. Let $|G|_p$ denote the order of Sylow *p*-subgroups of *G*. All unexplained notation and terminology are standard, as in [1] and [2].

For a class of groups \mathfrak{F} , a chief factor L/K of G is said to be \mathfrak{F} -central in G if $L/K \rtimes G/C_G(L/K) \in \mathfrak{F}$. A normal subgroup N of G is called \mathfrak{F} -hypercentral in G if either N = 1 or every chief factor of G below N is \mathfrak{F} -central in G. Let $Z_{\mathfrak{F}}(G)$ denote the \mathfrak{F} -hypercentre of G, that is, the product of all \mathfrak{F} -hypercentral normal subgroups of G. We use \mathfrak{N}_p and \mathfrak{S} to denote the classes of all p-nilpotent groups and soluble groups, respectively. It is well known that \mathfrak{N}_p and \mathfrak{S} are all S-closed saturated formations. Following Guo [3], a subgroup functor is a function τ which assigns to each group G a set of subgroups $\tau(G)$ of G satisfying that $1 \in \tau(G)$ and $\theta(\tau(G)) = \tau(\theta(G))$ for any isomorphism $\theta: G \to G^*$. If $H \in \tau(G)$, then H is called a τ -subgroup of G. If τ is a subgroup functor, then τ is said to be

http://www.global-sci.org/jms

©2016 Global-Science Press

^{*}Corresponding author. *Email addresses:* maoym@mail.ustc.edu.cn (Y. Mao), mxj790808@163.com (X. Ma)

- (1) inductive if for any group *G*, whenever $H \in \tau(G)$ is a *p*-group and $N \leq G$, then $HN/N \in \tau(G/N)$.
- (2) hereditary if for group *G*, whenever $H \in \tau(G)$ is a *p*-group and $H \leq E \leq G$, then $H \in \tau(E)$.
- (3) Φ -regular if any primitive group G, whenever $H \in \tau(G)$ is a p-group and N is a minimal normal subgroup of G, then $|G:N_G(H \cap N)|$ is a power of p.

Recall that a subgroup H of G is said to complemented in G if G has a subgroup K such that G = HK and $H \cap K = 1$. A subgroup H of G is said to be supplement in G if there exists a subgroup K such that G = HK. A subgroup H of G is said to be c-supplemented in G [4] if there exists a normal subgroup N of G such that G = HN and $H \cap N \leq H_G$, where H_G is the largest normal subgroup of G contained in H. For a formation \mathfrak{F} , a subgroup H of G is said to be \mathfrak{F} -supplement in G [5] if there exists a subgroup K of G such that G = HK and $(H \cap K)H_G/H_G \leq Z_{\mathfrak{F}}(G/H_G)$, where $Z_{\mathfrak{F}}(G/H_G)$ is the \mathfrak{F} -hypercenter of G/H_G . By using the above supplement subgroups, people have obtain many interesting results (see, for example, [4], [5] and [6]). As a continuation of the above researches, by using Guo-Skiba's method (see [7]), we now introduce the following notion:

Definition 1.1. Let \mathfrak{F} be a non-empty formation of groups, τ a subgroup functor and H a *p*-subgroup of a finite group G. Let $\overline{G} = G/H_G$ and $\overline{H} = H/H_G$. We say that H is \mathfrak{F}_{τ} -s-supplemented in G if for some subgroup \overline{T} and some τ -subgroup \overline{S} of \overline{G} contained in \overline{H} , $\overline{H}\overline{T}$ is subnormal in \overline{G} and $\overline{H} \cap \overline{T} \leq \overline{S}Z_{\mathfrak{F}}(\overline{G})$.

It is clear that *c*-supplemented subgroups and \mathfrak{F} -supplement subgroups are all \mathfrak{F}_{τ} -s-supplemented subgroups. But the following example shows that the converse is not true.

Example 1.1. Let $G = A \rtimes B$, where A is a cyclic group of order 5 and $B = \langle \alpha \rangle \in Aut(A)$ with $|\alpha| = 4$. Put $H = \langle \alpha^2 \rangle$. Since |G:HA| = 2, HA is normal in G. It is easy to see that $H_G = Z_{\infty}(G) = 1$. If $H_{sG} \neq 1$, then by [8, Lemma A], $O^2(G) \leq N_G(H_{sG})$ and so $H_{sG} \leq G$, which is impossible. Hence $H_{sG} = 1$. Let $\tau(G)$ be the set of all S-quainormal subgroups of G. If $S \leq H$ and $S \in \tau(G)$, then $S \leq H_{sG} = 1$. Hence H is \mathfrak{F}_{τ} -s-supplemented in G. But H is not \mathfrak{F} -supplement in G. Assume that H is \mathfrak{F} -supplement in G, and so H is complemented in G, and so H is complemented in B. This contradicts that B is cyclic. Therefore, H is not \mathfrak{F} -supplement in G. Clearly, $O_2(G) = 1$, so H is not \mathfrak{c} -supplement in G.

In this paper, we investigate the influence of the \mathfrak{F}_{τ} -s-supplemented subgroups on the structure of finite groups. Some new results of soluble groups are obtained.

2 Preliminaries

Lemma 2.1. [9, Lemma 2.5] *Let U be a subnormal subgroup of G.*

- (1) If $V \leq G$, then $U \cap V$ is subnormal in V.
- (2) If $N \trianglelefteq G$, then UN/N is subnormal in G/N.
- (3) If *U* is a π -subgroup, then $U \leq O_{\pi}(G)$.
- (4) If U is soluble, then U is contained in some normal soluble subgroup of G.

Lemma 2.2. [5, Lemma 2.1] Let \mathfrak{F} be a non-empty saturated formation, $H \leq G$ and $N \leq G$. *Then:*

- (1) $Z_{\mathfrak{F}}(G)N/N \leq Z_{\mathfrak{F}}(G/N).$
- (2) If \mathfrak{F} is S-closed, then $Z_{\mathfrak{F}}(G) \cap H \leq Z_{\mathfrak{F}}(H)$.

Lemma 2.3. Let \mathfrak{F} be a non-empty formation of groups and τ an inductive subgroup functor. Suppose that H is a p-subgroup of G and H is \mathfrak{F}_{τ} -s-supplemented in G.

- (1) If $N \leq G$ and either $N \leq H$ or (|H|, |N|) = 1, then HN/N is \mathfrak{F}_{τ} -s-supplemented in G/N.
- (2) If \mathfrak{F} is an s-closed saturated formation, τ is hereditary and $H \leq K \leq G$, then H is \mathfrak{F}_{τ} -s-supplemented in K.

Proof. Let $\overline{G} = G/H_G$ and $\overline{H} = H/H_G$. Since H is \mathfrak{F}_{τ} -s-supplemented in G, \overline{G} has a subgroup \overline{T} and a τ -subgroup \overline{S} contained in \overline{H} such that $\overline{H}\overline{T}$ is subnormal in \overline{G} and $\overline{H} \cap \overline{T} \leq \overline{S}Z_{\mathfrak{F}}(\overline{G})$, where $\overline{S} = S/H_G$ and $\overline{T} = T/H_G$.

(1) Let $\widehat{G} = G/(HN)_G$, $\widehat{HN} = HN/(HN)_G$, $\widehat{T} = T(HN)_G/(HN)_G$ and $\widehat{S} = S(HN)_G/(HN)_G$. Clearly, $H_G \leq (HN)_G$. Then $\widehat{S} \in \tau(\widehat{G})$ for τ is inductive. By Lemma 2.1 (2), \widehat{HNT} is subnormal in \widehat{G} . Since (|N|, |H|) = 1, $(|HN \cap T : T \cap N|, |HN \cap T : T \cap H|) = 1$. Hence $(HN \cap T) = (H \cap T)(N \cap T)$. By Lemma 2.2 (1), it is easy to see that $(Z_{\mathfrak{F}}(G/H_G))((HN)_G/H_G) \leq Z_{\mathfrak{F}}(G/(HN)_G)$. It follows that

$$\widehat{HN} \cap \widehat{T} = HN/(HN)_G \cap T(HN)_G/(HN)_G = (H \cap T)(HN)_G/(HN)_G$$

 $\leq (S(HN)_G/(HN)_G)(Z_{\mathfrak{F}}(G/(HN)_G)) = \widehat{S}Z_{\mathfrak{F}}(\widehat{G}).$

Therefore, HN/N is \mathfrak{F}_{τ} -s-supplemented in G/N.

(2) It is easy to see that H_G ≤ H_K. Let K̃ = K/H_K, H̃ = H/H_K, T̃ = (TH_K/H_K)∩(K/H_K) and S̃ = SH_K/H_K. Since τ is hereditary and inductive, S̃ ∈ τ(K̃). By Lemma 2.1 (1)
(2), H̃T̃ = (H/H_K)(TH_K/H_K∩K/H_K) = H(T∩K)/H_K = (HT∩K)/H_K is subnormal in K̃. Since 𝔅 is an s-closed saturated formation, Z_𝔅(G/H_K)∩K/H_K ≤ Z_𝔅(K/H_K) by Lemma 2.2 (2). It implies that H̃∩T̃ = H/H_K∩TH_K/H_K = (H∩T)H_K/H_K ≤ (SH_K/H_K)(Z_𝔅(G/H_K)∩K/H_K) ≤ (SH_K/H_K)(Z_𝔅(K/H_K)) = ŠZ_𝔅(K̃). Hence H is 𝔅_𝔅-s-supplemented in K.

Lemma 2.4. [1, Chapter I, 3.5] Suppose that $|G| = p_1 p_2 \cdots p_s$. Then G is soluble if and only if G has p'_i -Hall subgroup for every $i = 1, 2, \cdots, s$.

Lemma 2.5. [1, Chapter A, 14.3] *Let* A be a subnormal subgroup of G and N a minimal normal subgroup of G, then $N \le N_G(A)$.

3 Main Results

Theorem 3.1. Suppose that τ is a Φ -regular inductive subgroup functor. A group G is soluble if and only if every Sylow subgroup of G is \mathfrak{S}_{τ} -s-supplemented in G.

Proof. The necessity is obvious. We need only prove the sufficiency. Suppose that the assertion is false and let *G* be a counterexample of minimal order.

First we show that *G* has a unique minimal normal subgroup *N*, *G*/*N* is soluble and *G* is a primitive group. Let *N* be a minimal normal subgroup of *G*, and let *H*/*N* be a Sylow *p*-subgroup *G*/*N*, where *p* is a prime divisor of |G|. Then there exists a Sylow *p*-subgroup *G_p* of *G* such that $H = G_pN$. Let $\overline{G} = G/(G_p)_G$ and $\overline{G}_p = G_p/(G_p)_G$. By the hypothesis, \overline{G} has a subgroup \overline{T} and a τ -subgroup \overline{S} contained in \overline{G}_p such that $\overline{G_pT}$ is subnormal in \overline{G} and $\overline{G_p} \cap \overline{T} \leq \overline{SZ_{\mathfrak{S}}}(\overline{G})$, where $\overline{S} = S/(G_p)_G$ and $\overline{T} = T/(G_p)_G$. Let $\widehat{G} = G/(G_pN)_G, \widehat{G_pN} = G_pN/(G_pN)_G, \widehat{T} = T(G_pN)_G/(G_pN)_G$ and $\widehat{S} = S(G_pN)_G/(G_pN)_G$. Obviously, $(G_p)_G \leq (G_pN)_G$. Since τ is inductive, $\widehat{S} \in \tau(\widehat{G})$. By Lemma 2.1 (2), $\widehat{G_pNT} = (G_pN/(G_pN)_G)(T(G_pN)_G)$ is subnormal in \widehat{G} . Since $(|G_pN \cap T: G_p \cap T|, |G_pN \cap T: N \cap T|) = 1$, $(G_pN \cap T) = (G_p \cap T)(N \cap T)$. By Lemma 2.2 (1), it is clear to see that

$$(Z_{\mathfrak{S}}(G/(G_p)_G)((G_pN)_G/(G_p)_G)/((G_pN)_G/(G_p)_G) \leq Z_{\mathfrak{S}}(G/(G_pN)_G).$$

It follows that $\widehat{G_pN} \cap \widehat{T} = (G_pN)_G(G_pN \cap T)/(G_pN)_G \leq (S(G_pN)_G/(G_pN)_G)Z_{\mathfrak{S}}(G/(G_pN)_G)$ = $\widehat{S}Z_{\mathfrak{S}}(\widehat{G})$. Hence H/N is \mathfrak{S}_{τ} -s-supplemented in G/N. The choice of G implies that G/N is soluble. If N is soluble, then G is soluble, a contradiction. Therefore, N is not soluble. Since the class of all soluble groups is closed under subdirect product, N is the unique minimal normal subgroup of G. Clearly, $N \not\leq \Phi(G)$. There exists a maximal subgroup M of G such that $N \not\leq M$ and so $M_G = 1$. Hence G is a primitive group.

Let N_p be Sylow *p*-subgroup *N*, where *p* is any prime divisor of |N|. Then there exists a Sylow *p*-subgroup *P* of *G* such that $N_p = N \cap P$. Since *N* is not soluble and the unique minimal normal subgroup of *G*, $P_G = Z_{\mathfrak{S}}(G) = 1$ and $N = N_1 \times N_2 \times \cdots \times N_t$, where N_i $(i = 1, 2, \cdots, t)$ are isomorphic non-abelian simple groups. By the hypothesis, *G* has a subgroup *T* and a τ -subgroup *S* contained in *P* such that *PT* is subnormal in *G* and $P \cap T \leq S$. By Lemma 2.1(1), $PT \cap N_i$ is subnormal in N_i for every *i*, and so either $PT \cap N_i = 1$ or $N_i \leq PT$. If $PT \cap N_i = 1$, then $P \cap N = 1$, which is impossible. Assume that $N_i \leq PT$ for every *i*, then $N \leq PT$. It is easy to see that $(|N \cap PT : N \cap P| : |N \cap PT : N \cap T|) = 1$, so $N = N \cap PT = (N \cap P)(N \cap T)$. Since τ is a Φ -regular subgroup functor, $|G : N_G(S \cap N)|$ is a power of *p*. If $N \cap S > 1$, then $N = (S \cap N)^G = (S \cap N)^P \leq S^P \leq P$, a contradiction. Hence

 $N \cap S = 1$. It implies that $N \cap P \cap T \le N \cap S = 1$. This shows that every Sylow subgroup N is complemented in N. Hence, by Lemma 2.4, N is soluble. The final contradiction completed the proof of the theorem.

Corollary 3.1. [4, Theorem 2.4] A group *G* is soluble if and only if every Sylow subgroup of *G* is *c*-supplement in *G*.

Corollary 3.2. [5, Theorem 4.2] A group *G* is soluble if and only if every Sylow subgroup of *G* is \mathfrak{S} -supplement in *G*.

Theorem 3.2. Suppose that τ is a Φ -regular inductive and hereditary subgroup functor. Let *P* be a Sylow *p*-subgroup of *G*, where *p* is a prime divisor of |G| with (|G|, p-1)=1. If every maximal subgroup of *P* is \mathfrak{S}_{τ} -s-supplemented in *G*, then *G* is soluble.

Proof. Suppose that the theorem is false and let *G* is a counterexample with minimal order. Then p = 2 by Feit-Thompson's Theorem. We prove theorem via the following steps.

(1) $O_{2'}(G) = 1$

Suppose that $O_{2'}(G) \neq 1$. Let $M/O_{2'}(G)$ be a maximal subgroup of $PO_{2'}(G)/O_{2'}(G)$. Then $M = P_1O_{2'}(G)$ for some maximal subgroup P_1 of P. By the Lemma 2.3 (1) and the hypothesis, $P_1O_{2'}(G)/O_{2'}(G)$ is \mathfrak{S}_{τ} -s-supplemented in $G/O_{2'}(G)$. This shows that $G/O_{2'}(G)$ satisfies the hypothesis of the theorem. The choice of G implies that $G/O_{2'}(G)$ is soluble, and so G is soluble, a contradiction. Hence $O_{2'}(G) = 1$.

(2) $O_2(G) = 1$

Assume that $O_2(G) \neq 1$. Obviously, $P \neq O_2(G)$ and $|P/O_2(G)| \ge 2$. Let $P_1/O_2(G)$ be a maximal subgroup of $P/O_2(G)$. Then P_1 is a maximal subgroup of P. By the hypothesis and Lemma 2.3 (1), $P_1/O_2(G)$ is \mathfrak{S}_{τ} -s-supplemented in $G/O_2(G)$. The choice of G implies that $G/O_2(G)$ is soluble, and so G is soluble, a contradiction. Therefore, $O_2(G) = 1$.

(3) If $1 \neq H \trianglelefteq G$, then *H* is not soluble and G = PH.

Suppose that *H* is soluble. Then $O_2(H) \neq 1$ or $O_{2'}(H) \neq 1$. Without loss of generality, assume that $O_2(H) \neq 1$. Since $O_2(H)$ char $H \trianglelefteq G$, we get $O_2(H) \le O_2(G)$, which contradicts (2). Thus *H* is not soluble. Assume that PH < G. Then by Lemma 2.3 (2), every maximal subgroup of *P* is \mathfrak{S}_{τ} -s-supplemented in *PH*. Therefore *PH* satisfies the hypothesis. By the choice of *G*, we have that *PH* is soluble, and so *H* is soluble. This contradiction implies that G = PH.

(4) *G* has a unique minimal normal subgroup, denote by *N* and $N = N_1 \times N_2 \times \cdots \times N_t$, where N_i ($i = 1, 2, \dots, t$) are isomorphic non-abelian simple groups.

Let *N* be a minimal normal subgroup of *G*. Then by (3), G = PN. It is clear that $G/N \cong P/P \cap N$ is soluble. Since the class of all soluble groups is closed under

55

subdirect product, *G* has the unique minimal normal subgroup. Clearly, *N* is non-abelian, therefore $N = N_1 \times N_2 \times \cdots \times N_t$, where N_i ($i = 1, 2, \dots, t$) are isomorphic non-abelian simple groups.

(5) Final contradiction

Let P_1 be a maximal subgroup of P. By (4), $(P_1)_G = Z_{\mathfrak{S}}(G) = 1$. By the hypothesis, G has a subgroup T_1 and a τ -subgroup S_1 contained in P_1 such that P_1T_1 is subnormal in *G* and $P_1 \cap T_1 \leq S_1$. If $T_1 = 1$, then P_1 is subnormal in *G*, by Lemma 2.1 (3), $P_1 \leq S_1$. $O_2(G) = 1$. It follows that P is cyclic, and thereby G is 2-nilpotent by [10, 10.1.9]. Then G is soluble, a contradiction. Hence $T_1 \neq 1$. By Lemma 2.1 (1), $P_1T_1 \cap N_i$ is subnormal in N_i for every *i*, and so either $P_1T_1 \cap N_i = 1$ or $N_i \leq P_1T_1$. If $P_1T_1 \cap N_i = 1$, then $P_1 \cap N_i = 1$, which implies that $|N_i|_2 \leq 2$. Then by [10, 10.1.9] again, N_i is 2nilpotent, and so N_i is soluble, a contradiction. Hence $N_i \leq P_1 T_1$ for every *i*, then $N \leq P_1T_1$, and thereby $G = PT_1$ by (3). Since $(|T_1:T_1 \cap P|, |T_1:T_1 \cap N|) = (|PT_1:P|, |NT_1:T_1 \cap N|)$ N| = 1, we have $T_1 = (T_1 \cap P)(T_1 \cap N)$. Obviously, *G* is a primitive group. Assume that $N \cap S_1 > 1$. Since τ is a Φ -regular subgroup functor, then by (4), $N = (S_1 \cap N)^G =$ $(S_1 \cap N)^P \leq (P_1)^P = P_1$, a contradiction. Hence $N \cap S_1 = 1$. It implies that $N \cap P_1 \cap T_1 \leq S_1 = 1$. $N \cap S_1 = 1$. Clearly, $P \cap T_1$ is a Sylow *p*-subgroup of T_1 , and thereby $N \cap P \cap T_1$ is a Sylow *p*-subgroup of $N \cap T_1$. Since $|N \cap P \cap T_1| \leq 2$, $N \cap T_1$ is 2-nilpotent. Let V_1 be a normal Hall 2'-subgroup of $N \cap T_1$. If $V_1 = 1$, then T_1 is a 2-subgroup for $T_1 = (T_1 \cap T_1)$ $P(T_1 \cap N)$, which is impossible. Hence $V_1 \neq 1$. Since $|T_1:V_1| = |(T_1 \cap P)(T_1 \cap N):V_1|$ is a 2-subgroup and $V_1 \trianglelefteq T_1$ for V_1 char $N \cap T_1 \trianglelefteq T_1$, V_1 is a normal Hall 2'-subgroup. By (3), $G = PT_1$. It follows that $N = N \cap PT_1 = (N \cap P)(N \cap T_1)$, and thereby V_1 is a Hall 2'-subgroup of N. Put $H = N_G(V_1)$. Then by Frattini argument, G = NH. It is easy to see that $(|N:N\cap P|, |N:V_1|) = 1$, so $N = (N\cap P)V_1$. It follows that $G = H(N\cap P)$, and thereby $P = P \cap G = P \cap H(N \cap P) = (P \cap H)(N \cap P)$. Since $(|G:P|, |G:V_1|) = (|G:P|, |PN)$: $V_1|=1, G=PV_1=PH$. It follows that $(|H:P\cap H|, |H:V_1|)=1$, and so $H=(P\cap H)V_1$. If $P \cap H = P$, then $P \leq H$. It implies that G = H, then V_1 be a normal Hall 2'-subgroup of *G*. Therefore, $V_1 \leq O_{2'}(G) = 1$, a contradiction. Hence $P \cap H < P$. Then there exists a maximal subgroup P_2 of P such that $P \cap H \leq P_2$. Clearly, $(P_2)_G = 1$. By the hypothesis, *G* has a subgroup T_2 and a τ -subgroup S_2 contained in P_2 such that P_2T_2 is subnormal in *G* and $P_2 \cap T_2 \leq S_2$. A similar discussion as above, we have $N \leq P_2 T_2$ and $N \cap T_2$ is 2-nilpotent. Let V_2 be a normal Hall 2'-subgroup $N \cap T_2$. Obviously, $V_2 \neq 1$. The same argument as above, V_2 is a normal Hall 2'-subgroup of T_2 . Since $P = (P \cap H)(N \cap P) = (N \cap P)P_2$, we have $P \le P_2T_2$. By Lemma 2.3(2), P_2T_2 satisfies the hypothesis of the theorem. If $P_2T_2 < G$, then the choice of the G implies that P_2T_2 is soluble and so N is soluble, which contradicts (3). Therefore, $G = P_2T_2$. Since $G = PN = PT_2$, it is obvious that V_2 is a Hall 2'-subgroup of G. Therefore there an element $x \in P$ such that $V_1 = (V_2)^x$. Hence

$$G = (P_2T_2)^x = P_2N_G(V_2^x) = P_2N_G(V_1) = P_2H = P_2(P \cap H)V_1 = P_2V_1.$$

Then $|G| = |P_2||V_1| < |P||V_1| = |G|$, a contradiction. This completes the proof of the

theorem.

Corollary 3.3. Let *M* be a maximal subgroup of *G* and *P* a Sylow *p*-subgroup of *M*, where *p* is the smallest prime dividing |M|. If every maximal subgroup of *P* is \mathfrak{F}_{τ} -s-supplemented in *G*, then *G* is soluble.

Proof. Suppose that the result is false and let *G* be a counterexample of minimal order. By Feit-Theopson's theorem, we know $2 \in \pi(G)$. By Lemma 2.3(2), every maximal subgroup of *P* is \mathfrak{S}_{τ} -semiembedded in *M*. The choice of *G* implies that *M* is soluble. If |G:M|=2, then $M \trianglelefteq G$, and so *G* is soluble, a contradiction. Hence |G:M| > 2, then *P* is a Sylow *p*-subgroup of *G*, by Theorem 3.1, *G* is soluble, a contradiction. Hence the theorem holds.

Acknowledgments

Research was supported by a NSFC (Grant No. 11371335).

References

- [1] K. Doerk, T. Hawkes. Finite Solvable Groups. Berlin: Walter de Gruyter, 1992.
- [2] W. Guo. The Theory of Classes of Groups. Science Press-Kluwer Academic Publishers, Beijing-New York-Dordrecht-Boston-London, 2000.
- [3] W. Guo. Structure Theory for Canonical Classes of Finite Groups. Springer, 2015.
- [4] Y. Wang. Finite groups with some subgroups of Sylow subgroups c-supplemented. J. Algebra, 2000, 224: 467-478.
- [5] W. Guo. On *§*-supplement subgroups of finite groups. Manuscripta math. 2008, 127: 139-150.
- [6] X. Yi, L. Mao, H. Zhang, W. Guo. Finite groups with some *δ*-supplement subgroups. J. of Algebra and Its Applications, 2010, 9(5): 669-685.
- [7] W. Guo, A. N. Skiba. Finite groups with generalized Ore supplement conditions for primary subgroups. J. Algebra, 2015 (to appear).
- [8] P. Schmid. Subgroups permutable with all Sylow subgroups. J. Algebra, 1998, 207: 285-293.
- [9] A.N. Skiba. On weakly *s*-permutable subgroups of finite groups. J. Algebra, 2007, 315(1): 192-209.
- [10] D.J.S. Robinson. A Course in the Theory of Groups. Springer, New York, 1982.