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Abstract

In this paper, we consider the linear elasticity problem based on the Hellinger-Reissner

variational principle. An O(h2) order superclose property for the stress and displacement

and a global superconvergence result of the displacement are established by employing a

Clément interpolation, an integral identity and appropriate postprocessing techniques.
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1. Introduction

1.1. Introduction

In this paper, we consider the mixed finite element (for short MFE) approximation of a

stress-displacement system derived from the Hellinger-Reissner variational principle for the

linear elasticity problem. As is known to all, the MFE methods require that the pair of finite

element spaces satisfying the B-B condition. Although there are a number of well-known stable

MFEs for the analogous problems involving vector fields and scalar fields [1], the combination of

the symmetry and continuity conditions of the stress field is a substantial additional difficulty.

On the other hand, a lot of efforts, dating back four decades, have been devoted to develop

stable MFEs for the linear elasticity problem, but no stable MFE scheme with polynomial shape

functions are yielded. Not until the year 2002, were there some development in this direction.

In [2], a sufficient condition was given and then a family of stable MFEs were constructed with

respect to arbitrary triangular meshes, with 24 stress and 6 displacement degrees of freedom

for the lowest order element, and an optimal order error estimate was obtained. An analogous

family of conforming MFEs based on rectangular meshes were proposed in [3], involving 45

stress and 12 displacement degrees of freedom for the lowest order element. Two nonconforming

triangular elements were presented in [4] with 12 degrees of freedom for the stress and 3 degrees

of freedom for the displacement.

Although many stable elements have been constructed for this problem, they involve too

much degrees of freedom. Recently, some more simple elements have been developed. In [5], a

group of nonconforming rectangular elements were introduced, with the convergence order of
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O(h) in L2-norm for both the stress and the displacement, and the simplest element employed

12 degrees of freedom for the stress and 4 for the displacement. In [6], a family of conforming

rectangular MFEs were proposed. It is closely related to one of the elements in [5]. Actually,

the same finite element space is used for the displacement, while the space used to approximate

the stress space is an extension of [5]. The lowest order pair in this family, with 17 degrees of

freedom for the stress and 4 for the displacement, results in a convergence rate of O(h2) for the

stress and O(h) for the displacement in L2-norm, respectively. In [7], a new family of minimal,

any space-dimensional, symmetric, nonconforming mixed finite elements were presented. In 1D,

it is nothing else but the 1D Raviart-Thomas element, which is the only conforming element

in this family. In 2D and higher dimensions, they are new elements but of the minimal degrees

of freedom. The total degrees of freedom for per element are 2 plus 1 in 1D, 7 plus 2 in 2D,

and 15 plus 3 in 3D, respectively. In [8], the elements used in [7] were extended to conforming

elements by enriching the spaces for both the stress and displacement, and the number of total

degrees of freedom for per element are 10 plus 4 in 2D, and 21 plus 6 in 3D respectively, which

are the simplest conforming rectangular elements so far.

On the other hand, the superconvergence study of the finite element methods is one of

the most active topics for a long time in theoretical analysis and practical computations, and

many valuable results about conforming and nonconforming finite elements have been obtained

for different problems [9 –16], but no consideration on this aspect is known about the finite

elements of [6]. In this paper, at the first attempt, we will have a try to fill this gap. We

obtain the supercloseness property of O(h2) order for the stress and displacement and the

superconvergence result of O(h2) order for the displacement in L2-norm through a Clément

interpolation, an integral identity and interpolation postprocessing techniques.

The rest of this paper is organized as follows. In next section, some notations and prelimi-

naries are introduced and the weak coercivity is established by the V-elliptic property and the

B-B condition. Then we present the construction of finite element spaces in section 3. The last

section is devoted to derive the supercloseness and global superconvergence of the displacement

field.

2. Notations and Preliminaries

In this part, firstly we introduce some special functional spaces and operators. Let Ω ⊂ R2

be a bounded convex domain, and p, v = (v[1], v[2]) and τ = (τij)2×2 be a function, vector-valued

field and symmetric tensor, respectively. We define the following notions:

gradp =

(

∂p/∂x

∂p/∂y

)

, div τ =

(

∂τ11/∂x+ ∂τ12/∂y

∂τ21/∂x+ ∂τ22/∂y

)

,

gradv =

(

∂v[1]
/

∂x ∂v[1]
/

∂y

∂v[2]
/

∂x ∂v[2]
/

∂y

)

, ǫ(v) =
1

2
(grad v + (grad)T v).

Let S denote the space of symmetric tensors, equipped with the inner product

(σ, τ) =

∫

Ω

σ : τ, where σ : τ =

2
∑

i,j=1

σijτij .

The space Hk(Ω, X) is defined as

Hk(Ω, X) =
{

v ∈ L2(Ω, X) |Dαv ∈ L2(Ω, X), ∀ |α| ≤ k
}

,
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where X rangesR,R2 or S. If X = R, we will simply useHk(Ω) instead. The spaceH(div,Ω, S)

is defined by

H(div,Ω, S) =
{

τ ∈ L2(Ω, S) | divτ ∈ L2(Ω,R2)
}

.

We can check that H(div,Ω, S) is a Hilbert space equipped with the norm

‖τ‖
H(div) =

√

‖τ‖
2
0 + ‖divτ‖

2
0

and inner product

(σ, τ)
H(div) =

∫

Ω

σ : τ + divσ · divτ .

Next we consider the linear elasticity problem in R2: given a body force f , find a symmetric

stress tensor σ and a displacement u such that







Aσ = ǫ(u), in Ω,

−divσ = f, in Ω,

u = 0, on ∂Ω,

(2.1)

where the compliance tensor A = A(x, y) : S → S is bounded and symmetric positive definite

uniformly for (x, y) ∈ Ω.

The weak formulation of (2.1), based on the Hellinger-Reissner variational principle, is to

find (σ, u) ∈ Σ× V such that

{

a(σ, τ) + b(τ, u) = 0, ∀τ ∈ Σ,

b(σ, v) = G(v), ∀v ∈ V,
(2.2)

where Σ = H(div, Ω, S), V = L2(Ω,R2),

a(σ, τ) =

∫

Ω

Aσ : τ, b(τ, v) =

∫

Ω

divτ · v, G(v) = −

∫

Ω

f · v.

The bilinear form a(·, ·) is V-elliptic in the collection Z = {τ ∈ Σ | b(τ, v) = 0, ∀v ∈ V } and

the B-B condition is satisfied in the sense that there exist positive constants α and β such that

a(τ, τ) ≥ α ‖τ‖
2
H(div) , ∀τ ∈ Z, (2.3)

sup
τ∈Σ

∫

Ω
divτ · v

‖τ‖H(div)
≥ β‖v‖0, ∀v ∈ V, (2.4)

therefore, the problem (2.2) has a unique solution.

We rewrite this problem as: find (σ, u) ∈ Σ× V such that

Q((σ, u), (τ, v)) = −G(v), ∀(τ, v) ∈ Σ× V, (2.5)

where

Q((σ, u), (τ, v)) =

∫

Ω

Aσ : τ +

∫

Ω

divτ · u−

∫

Ω

divσ · v.

Then we define the norm on Σ× V by its square:

‖(τ, v)‖
2
= ‖τ‖2

H(div) + ‖v‖20.

The following lemma will play an important role in our supercloseness analysis, of which

the similar proof can be found in [17]. For the sake of completeness, we give the proof sketchily.
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Lemma 2.1. If (2.3) and (2.4) hold, the following weak coercivity condition is true

sup
(τ,v)∈Σ×V

Q((σ, u), (τ, v))

‖(τ, v)‖
≥ C ‖(σ, u)‖ , ∀(σ, u) ∈ Σ× V. (2.6)

Proof. Given (σ, u) ∈ Σ× V , we consider the following two auxiliary problems:

Problem 1: find (σ1, u1) ∈ Σ× V , such that

{

a(τ, σ1)− b(τ, u1) = (σ, τ)H(div), ∀τ ∈ Σ,

b(σ1, v) = 0, ∀v ∈ V.
(2.7)

Problem 2: find (σ2, u2) ∈ Σ× V , such that

{

a(τ, σ2)− b(τ, u2) = 0, ∀τ ∈ Σ,

b(σ2, v) = (u, v), ∀v ∈ V.
(2.8)

Obviously, each of (2.7) and (2.8) has a unique solution if (2.3) and (2.4) hold. We now set

(τ, v) = ((σ1 + σ2), (u1 + u2)), then

Q((σ, u), (τ, v)) = a(σ, σ1 + σ2) + b(σ1 + σ2, u)− b(σ, u1 + u2)

= ‖σ‖
2
H(div) + ‖u‖

2
0 = ‖(σ, u)‖2,

where (2.7) and (2.8) are used. Since ‖(σ1, u1)‖ ≤ C‖σ‖H(div) and ‖(σ2, u2)‖ ≤ C‖u‖0, we get

‖(τ, v)‖ ≤ C ‖(σ, u)‖, and finally

Q((σ, u), (τ, v)) ≥ C ‖(σ, u)‖ ‖(τ, v)‖ ,

which implies the desired result. 2

3. Construction of the Finite Element Spaces

Let Ω ⊂ R2 be a rectangular domain with the boundary ∂Ω parallel to x-axis or y-axis in the

plane, Th be a family of axiparallel rectangular meshes of Ω, and h be the mesh size. For a given

K ∈ Th, we denote the central point of the element K by (xK , yK), the length of edges parallel

x-axis and y-axis by 2hxK
and 2hyK

, respectively. Denote the four vertices by di(i = 1, 2, 3, 4),

and the four sides by li = didi+1(i = 1, 2, 3, 4 mod 4), where d1 = (xK − hxK
, yK − hyK

), d2 =

(xK +hxK
, yK −hyK

), d3 = (xK +hxK
, yK +hyK

) and d4 = (xK −hxK
, yK +hyK

). n = (n1, n2)

and t = (−n2, n1) denote the unit normal vector and the unit tangential vector, respectively.

The space Qi,j(K) consists of polynomials on K of degree at most i for x and j for y. The

space Pi(K) consists of polynomials on K of total degree at most i for x and y.

Let Σh and Vh be the finite element spaces for the stress field Σ and the displacement field V ,

respectively. To get a unique solution and to ensure a good approximation of the true solution,

the pair Σh and Vh must satisfy the B-B condition. In [2], Arnold and Winther established a

set of stability conditions instead of the B-B condition for the elasticity problem, that is

• (A1) divΣh ⊂ Vh,

• (A2) There exists a linear operator Πh : H1(Ω, S) → Σh, bounded in L(H1, L2) uni-

formly with respect to h, such that divΠhσ = Phdivσ for all σ ∈ H1(Ω, S), where

Ph : L2(Ω,R2) → Vh denotes the L2-projection operator.
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In this paper, we define the finite element space Vh similar to the zero-degree Raviart-

Thomas rectangular element to get the supercloseness and superconvergence result, and adapt

the finite element space Σh and the linear operator Πh as [6], which are constructed to satisfy

conditions (A1) and (A2). Now we introduce the definitions of Vh, Σh, and Πh.

• Firstly, let VK = (V
[1]
K , V

[2]
K ), where V

[1]
K = Q0,1(K), V

[2]
K = Q1,0(K). We define the

degrees of freedom for VK as follows:

(e)
∫

l1
v[1]ds,

∫

l3
v[1]ds;

∫

l2
v[2]ds,

∫

l4
v[2]ds,

that is, the two horizontal and vertical edge integral values are employed as the degrees

of freedom for the finite element spaces defined by Q0,1(K) and Q1,0(K) respectively,

which is similar to that for the zero-degree Raviart-Thomas rectangular element. The

only difference lies that the order of the vector component is reversed.

• Secondly, we define

ΣK =

{

τ ∈

(

Q3,1(K) Q2,2(K)

Q2,2(K) Q1,3(K)

)

| divτ ∈ VK

}

.

It can be checked that the explicit representation of ΣK is as follows:

ΣK =

(

Q1,1(K) P1(K)⊕ span{x2, y2}

P1(K)⊕ span{x2, y2} Q1,1(K)

)

⊕ span

{(

− 1
2x

2 xy

xy − 1
2y

2

)

,

(

− 1
3x

3 x2y

x2y −xy2

)

,

(

−x2y xy2

xy2 − 1
3y

3

)

,

(

− 2
3x

3y x2y2

x2y2 − 2
3xy

3

)}

.

The degrees of freedom for ΣK are defined as

• (a)
∫

li
τn · nvds, ∀v ∈ P1(li), (b)

∫

li
τn · tds,

• (c) τ12(di), (d)
∫

K
τ12,

where P1(li) denotes the space of linear polynomials on li (i=1,2,3,4). Then a stress field

τ ∈ ΣK can be determined by the degrees of freedom of (a), (b), (c) and (d) uniquely, which is

the result of Lemma 1 in [6].

Thirdly, we introduce how to construct the operator Πh. Because the vertex degrees of

freedom (c) is employed for ΣK , the canonical interpolation operator is not bounded with respect

to the norm in H1(Ω, S). To construct an effective interpolation operator with respect to the

norm H1(Ω), we first let Rh : L2(Ω, S) → Σ0
h ⊂ Σh ∩H1(Ω, S) be a Clément interpolation [18]

satisfying

‖Rhτ − τ‖0 ≤ Ch2‖τ‖2, (3.1)

where Σ0
h = {τ ∈ C0(Ω, S)

∣

∣ τij |K ∈ Q1,1(K), ∀K ∈ Th}. Then the interpolation operator

Πh : H1(Ω, S) → Σh, Πh|K = ΠK is defined by

(ΠKτ)12(di) = (Rhτ)12(di), (3.2)
∫

li

(ΠKτ − τ)n · nvds = 0, ∀v ∈ P1(li), (3.3)

∫

li

(ΠKτ − τ)n · tds = 0, (3.4)

∫

K

(ΠKτ − τ) : φ = 0, ∀φ ∈ ǫ(VK), (3.5)
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and the following properties of Πh hold

divΠhτ = Phdivτ, (3.6)

‖Πhτ‖0 ≤ C‖τ‖1, (3.7)

‖Πhτ − τ‖0 ≤ Ch2‖τ‖2. (3.8)

In fact, property (3.6) can be proved by use of (3.3)-(3.5) and Green’s formula, which is the

result of lemma 2 in [6]. Properties (3.7) and (3.8) can be proved by use of (3.1),(3.2) and the

standard scaling arguments, and a direct proof was given in [6]. Then (3.6) and (3.7) imply

that condition (A2) is satisfied.

Finally, we give the finite element spaces as follows

Vh =
{

v ∈ L2(Ω,R2) | v|K ∈ VK , ∀K ∈ Th

}

,

Σh =
{

τ ∈ L2(Ω, S) | τ |K ∈ ΣK , ∀K ∈ Th

}

.

From the definitions of ΣK and VK , we can check that condition (A1) is also satisfied. The

conforming finite element approximation of (2.2) reads as: find (σh, uh) ∈ Σh × Vh such that

{

a(σh, τh) + b(τh, uh) = 0, ∀τh ∈ Σh,

b(σh, vh) = G(vh), ∀vh ∈ Vh.
(3.9)

Because (A1) and (A2) are satisfied, the approximation problem (3.9) has a unique solution.

The error equation can be obtained instantly from (2.2) and (3.9) as follows

Q((σ − σh, u− uh), (τh, vh)) = 0, ∀(τh, vh) ∈ Σh × Vh. (3.10)

4. Supercloseness and Superconvergence Analysis

To get the supercloseness and superconvergence result, we first define the interpolation

operator IK : L2(Ω,R2) → VK , IK = (I
[1]
K , I

[2]
K ) as follows

∫

li

(v[1] − I
[1]
K v[1])ds = 0, i = 1, 3;

∫

li

(v[2] − I
[2]
K v[2])ds = 0, i = 2, 4, (4.1)

then Ih = (I
[1]
h , I

[2]
h ) is defined by Ih|K = IK .

Letw[1] = u[1] − I
[1]
K u[1], w[2] = u[2] − I

[2]
K u[2], and the error functions F (y) = 1

2 ((y − yK)2 −

h2
yK

), F 2(y) = (F (y))2, then we will introduce the following important lemma. It can be derived

similarly from Lemma 1.1 in [15], but for the sake of completeness, we give the proof.

Lemma 4.1. If u ∈ H2(Ω,R2), then for all v ∈ Vh, there holds
∫

Ω

(u− Ihu) · v = O(h2)|u|2‖v‖0. (4.2)

Proof. For v[1] ∈ V
[1]
h and K ∈ Th, there holds

v[1](x, y) = v[1](xK , yK) + (y − yK)v[1]y .

Then
∫

K

w[1]v[1] =

∫

K

w[1]v[1](xK , yK) +

∫

K

w[1](y − yK)v[1]y .
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Note that (F (y))′, (F 2(y))′′ are constants and F (y), (F 2(y))′ vanish when restricted to l1, l3,

where superscripts ′ and ′′ denote derivative, and
∫

l1
w[1]ds = 0,

∫

l3
w[1]ds = 0, we have

∫

K

w[1] =

∫

K

(F (y))′′w[1] =

∫

l3

(F (y))′w[1]ds−

∫

l1

(F (y))′w[1]ds)−

∫

K

(F (y))′w[1]
y

= −

(
∫

l3

F (y)w[1]
y ds−

∫

l1

F (y)w[1]
y ds

)

+

∫

K

F (y)w[1]
yy =

∫

K

F (y)u[1]
yy,

and

∫

K

w[1](y − yK) =
1

6

∫

K

(F 2(y))
′′′

w[1]

=
1

6

(
∫

l3

(F 2(y))
′′

w[1]ds−

∫

l1

(F 2(y))
′′

w[1]ds

)

−
1

6

∫

K

(F 2(y))
′′

w[1]
y

= −
1

6

(
∫

l3

(F 2(y))
′

w[1]
y ds−

∫

l1

(F 2(y))
′

w[1]
y ds

)

+
1

6

∫

K

(F 2(y))
′

w[1]
yy

=
1

3

∫

K

F (y)(y − yK)u[1]
yy.

By Hölder inequality and inverse inequality, we get

∫

K

w[1]v[1] =

∫

K

F (y)u[1]
yy(v

[1] − (y − yK)v[1]y ) +
1

3

∫

K

F (y)(y − yK)u[1]
yyv

[1]
y

= O(h2
yK

)
∣

∣

∣
u[1]

∣

∣

∣

2,K

∥

∥

∥
v[1]

∥

∥

∥

0,K
. (4.3)

Similarly, we can get
∫

K

w[2]v[2] = O(h2
xK

)
∣

∣

∣
u[2]

∣

∣

∣

2,K

∥

∥

∥
v[2]

∥

∥

∥

0,K
. (4.4)

Then the desired result follows from (4.3) and (4.4) by summing all K over Th. 2

Based on Lemma 4.1, we have

Theorem 4.1. Assume that (σ, u) and (σh, uh) are the solutions of (2.2) and (3.9), respectively.

If (σ, u) ∈ H2(Ω, S)×H2(Ω,R2), then there holds the following superclose property

‖(σh −Πhσ, uh − Ihu)‖ = O(h2)(‖σ‖2 + ‖u‖2). (4.5)

Proof. By (2.6) and (3.10), we have

‖(σh −Πhσ, uh − Ihu)‖ ≤ C sup
(τh,vh)∈Σh×Vh

Q((σh −Πhσ, uh − Ihu), (τh, vh))

‖(τh, vh)‖

≤ C sup
(τh,vh)∈Σh×Vh

Q((σ −Πhσ, u − Ihu), (τh, vh))

‖(τh, vh)‖

= C sup
(τh,vh)∈Σh×Vh

1

‖(τh, vh)‖

{
∫

Ω

A(σ −Πhσ) : τh

+

∫

Ω

divτh · (u− Ihu)−

∫

Ω

div(σ −Πhσ) · vh

}

.
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Then, (3.6), (3.8) and (4.2) imply that
∫

Ω

div(σ −Πhσ) · vh =

∫

Ω

(divσ − Phdivσ) · vh = 0, (4.6)

∫

Ω

A(σ −Πhσ) : τh ≤ C‖σ −Πhσ‖0‖τh‖0 ≤ Ch2‖σ‖2‖τh‖0, (4.7)

∫

Ω

divτh · (u− Ihu) ≤ Ch2 ‖u‖2 ‖divτh‖0. (4.8)

Combining the above three estimates yields the desired result.

Remark 4.1. We point out that the result of Theorem 4.1 can be extended to arbitrary degree

polynomial finite elements of [3] and [6] easily.

Next we derive the superconvergence by employing interpolation postprocessing techniques.

In order to do this, we merge the adjacent four elements into one big element K̃, K̃=
4
⋃

i=1

Ki

(see Fig. 4.1), and denote the partition by T2h.

l1 l2

l8 l9 l3

l12 l10

l7 l11 l4

l6 l5

K1 K2

K4 K3

Fig. 4.1 Big element K̃.

Similar to the zero-degree Raviart-Thomas rectangular element ( see [15] or [16]), we construct

the following postprocessing interpolation operator I2h = (I
[1]
2h , I

[2]
2h) on K̃ ∈ T2h as











I2hu|K̃ ∈ Q1,1(K̃)×Q1,1(K̃),
∫

li
(u[1] − I

[1]
2hu

[1]) ds = 0, i = 1, 2, 5, 6,
∫

li
(u[2] − I

[2]
2hu

[2]) ds = 0, i = 3, 4, 7, 8.

(4.9)

Then, there holds the following lemma.

Lemma 4.2. For all u ∈ H2(Ω,R2), the interpolation operator I2h satisfies

I2hIhu = I2hu, (4.10)

‖I2hu− u‖0 ≤ Ch2‖u‖2, (4.11)

‖I2hv‖0 ≤ C‖v‖0, ∀v ∈ Vh. (4.12)

Proof. Firstly, (4.11) can be obtained directly from the interpolation theory. Secondly, by

the definitions of I2h and Ih, we can see
∫

li

I
[1]
2hI

1
hu

[1]ds =

∫

li

I
[1]
h u[1]ds =

∫

li

u[1]ds =

∫

li

I
[1]
2hu

[1]ds, i = 1, 2, 5, 6.
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Then, from the well-poseness of I2h, we have I
[1]
2hI

[1]
h u[1] = I

[1]
2hu

[1]. Similarly, I
[2]
2hI

[2]
h u[2] =

I
[2]
2hu

[2]. So (4.10) is true.

Lastly, we will prove (4.12). Let 2hx
K̃
and2hy

K̃
be the length of edges of K̃ parallel x-axis

and y-axis, respectively, ˆ̃
K be the reference element of of K̃, F be an affine mapping from ˆ̃

K

to K̃. ∀v ∈ Vh, v̂ = v ◦ F , let

v̂
[1]
i

∆
=

∫

l̂i

v̂[1]dŝ, i = 1, 2, 5, 6.

Then

Î
[1]
2h v̂

[1] =
1

4

(

v̂
[1]
1 + v̂

[1]
2 + v̂

[1]
5 + v̂

[1]
6

)

+
1

2

(

−v̂
[1]
1 + v̂

[1]
2 + v̂

[1]
5 − v̂

[1]
6

)

ξ

+
1

4

(

−v̂
[1]
1 − v̂

[1]
2 + v̂

[1]
5 + v̂

[1]
6

)

η +
1

2

(

v̂
[1]
1 − v̂

[1]
2 + v̂

[1]
5 − v̂

[1]
6

)

ξη.

By trace theory and norm equivalence lemma, we have

∥

∥

∥
Î
[1]
2h v̂

[1]
∥

∥

∥

0, ˆ̃K
≤ C

(∣

∣

∣
v̂
[1]
1

∣

∣

∣
+
∣

∣

∣
v̂
[1]
2

∣

∣

∣
+
∣

∣

∣
v̂
[1]
5

∣

∣

∣
+
∣

∣

∣
v̂
[1]
6

∣

∣

∣

) (∣

∣

∣

ˆ̃
K
∣

∣

∣
+ ‖ξ‖

0, ˆ̃K
+ ‖η‖

0, ˆ̃K
+ ‖ξη‖

0, ˆ̃K

)

≤ C
∑

i=1,2,5,6

∥

∥

∥
v̂[1]

∥

∥

∥

0,l̂i
≤ C

∑

i=1,2,3,4

∥

∥

∥
v̂[1]

∥

∥

∥

1,K̂i

≤ C
∥

∥

∥
v̂[1]

∥

∥

∥

0, ˆ̃K
,

∥

∥

∥
I
[1]
2hv

[1]
∥

∥

∥

0,K̃
= hx

K̃
hy

K̃

∥

∥

∥
Î
[1]
2h v̂

[1]
∥

∥

∥

0, ˆ̃K
≤ Chx

K̃
hy

K̃

∥

∥

∥
v̂[1]

∥

∥

∥

0, ˆ̃K
≤ C

∥

∥

∥
v[1]

∥

∥

∥

0,K̃
.

Similarly,
∥

∥

∥
I
[2]
2hv

[2]
∥

∥

∥

0,K̃
≤ C

∥

∥

∥
v[2]

∥

∥

∥

0,K̃
.

So (4.12) holds. The proof is complete. 2

Theorem 4.2. Under the assumptions of Theorem 4.1, we have the following superconvengence

result

‖I2huh − u‖0 = O(h2)(‖σ‖2 + ‖u‖2). (4.13)

Proof. By Theorem 4.1 and Lemma 4.2, we have

‖I2huh − u‖0 ≤ ‖I2huh − I2hIhu‖0 + ‖I2hIhu− u‖0

≤ C‖uh − Ihu‖0 + ‖I2hu− u‖0

= O(h2)(‖σ‖2 + ‖u‖2).

The proof is complete. 2

Remark 4.2. The superconvergence result in L2-norm of Theorem 4.2 cannot be derived by

the elements of [5] for their consistency errors can only be estimated with order O(h) instead

of order O(h2) in the sense of the broken H(div) norm.

5. Conclusion

In this paper, we propose a method to analyze the superconvergence phenomenon of the

linear elasticity problem for some rectangular conforming MFEMs in [3] and [6]. Indeed, these

rectangular MFEMs involve many degrees of freedom, and the finite element space of stress
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is not easy to be constructed, so the numerical implementation is not convenient. Recently,

some more simple and excellent elements have been developed in [7] and [8], moreover, the

superconvergence phenomenon has been observed in numerical tests of [8]. In our next work

we will apply our method to analyze the element of [8].
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