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Abstract

The fast solutions of Crank-Nicolson scheme on quasi-uniform mesh for parabolic prob-

lems are discussed. First, to decrease regularity requirements of solutions, some new error

estimates are proved. Second, we analyze the two characteristics of parabolic discrete

scheme, and find that the efficiency of Multigrid Method (MG) is greatly reduced. Nu-

merical experiments compare the efficiency of Direct Conjugate Gradient Method (DCG)

and Extrapolation Cascadic Multigrid Method (EXCMG). Last, we propose a Time-

Extrapolation Algorithm (TEA), which takes a linear combination of previous several

level solutions as good initial values to accelerate the rate of convergence. Some typical

extrapolation formulas are compared numerically. And we find that under certain accuracy

requirement, the CG iteration count for the 3-order and 7-level extrapolation formula is

about 1/3 of that of DCG’s. Since the TEA algorithm is independent of the space di-

mension, it is still valid for quasi-uniform meshes. As only the finest grid is needed, the

proposed method is regarded very effective for nonlinear parabolic problems.
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1. Introduction

In modern science and technique, the high-dimensional parabolic problems, such as high

heat transmission, superconductor, semi-conductor, nuclear-fusion and so on, are more and

more important. However their computation is still very difficult.

As we all know, for the linear systems derived from elliptic problems, solving by direct meth-

ods is very difficult when the number of unknowns is more than tens of thousands. Therefore

various iterative methods have emerged, such as

• Conjugate Gradient Method (CG) is efficient for solving symmetric positive definite sys-

tems, but the efficiency of CG reduces significantly when the condition number of coeffi-

cient matrix is greater than 103. The use of precondition techniques may be appropriate

to improve the convergence rate, but the computational complexity increases.
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• Multigrid Method (MG) was presented by Fedorenko (1961) and Brandt (1977) [1]. For

the linear systems derived from elliptic problems, the computational work W = O(N) of

MG is proportional to the number of unknowns N . So MG, widely used in scientific and

engineering computing, has become one of the most effective algorithms to solve large

scale problem. It should be noted that grids generated by MG method just satisfy the

requirements for superconvergence and extrapolation.

• Cascadic Multigrid Method (CMG) presented by Bornemann [2], Deuflhard [8] and Shaidurov

[17] is an one-way multigrid method which may be viewed as a multilevel method without

the coarse mesh correction. Since 1998, Shi et al. made a lot of theoretical analy-

sis [19, 20]. Because of its high efficiency, CMG has been quickly applied to a series of

problems [10, 15, 16, 19, 24].

In recent years, we have proposed an extrapolation cascadic multi-grid method (EXCMG)

[3, 6] and a new extrapolation formula, which use a linear combination of the solutions on

previous 2 level coarse meshes to provide a good initial value of finite element solution on next-

level fine mesh. This method is of high accuracy and converges for both the function and its

derivative. The numerical experiments show that the work of EXCMG is close to that of MG

algorithm for simple linear problems. However, EXCMG requires less iterations on the finest

mesh and converges more quickly, see [7] for details.

Of course, the above methods can be used to solve parabolic problems, direct methods or

indirect methods (i.e. the combination and iteration on multi-levels in time). Brandt studied

early the indirect method, Hackbush [12] also suggested a time parallel MG algorithm. Later,

Horton [13](1992), Horton and Vandewalle [14](1995), Gander and Vandewalle [11](2007) pre-

sented further developments. Shi and Xu [19](2000), Du and Ming [10](2008) directly used the

CMG to solve the resulting elliptic problems with a discrete in time formulation for parabolic

problems. In a word, all these methods are effective.

However the linear systems derived from parabolic problems have the own characteristics.

For example, the condition number, Cond(A) ≈ 4r, r = a2k/(2h2), is much smaller than

the condition number of corresponding elliptic problems (O(h−2)). And the solution U j−1

obtained by previous level provides a good initial value of the solution U j of the present level

(U j = U j−1 +O(k)). Numerical experiments show that for elliptic problems MG and EXCMG

have the absolute advantage, but for parabolic problems things change. Especially when the

condition number is not large(such as r < 1000), the efficiency of the two algorithms is greatly

reduced, and they have lost the absolute advantage even though still better than the direct

CG-iteration. Therefore we should develop other efficient algorithms for parabolic problems.

C.C. Douglas [9](1996) predicted that “some excellent time-extrapolation methods exist

which can be coupled to conjugate gradient- like methods. Once the first few time steps are

solved (slowly), the extrapolation method provides such a good initial value to the solution on

the next time step that only a few (say, one or two) iterations of the conjugate gradient-like

method are needed before moving on. In this situation multigrid cannot compete.” However

the numerical experiments and our research show that this problem is quite complicated, far

from being so simple as he said.

In this paper we should derive some new estimates of Crank-Nicolson scheme at first , then

we will discuss the following algorithms used to solve parabolic problems:

• Direct CG-iteration (DCG) is acceptable when r < 700.
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• For the model problem EXCMG needs about 16 iterations of CG (convert into the finest

grid), independent of r.

• For TEA, under the same control accuracy, CG iteration count of the extrapolation for-

mula 3D7L of 3-order and 7-level is about 1/3 of DCG’s. It seems that TEA will be more

favorable for nonlinear parabolic problems.

The rest of our paper is organized as follows: In Section 2, we derive some new esti-

mates of Crank-Nicolson scheme. In Section 3, we compare DCG and EXCMG. A new Time-

Extrapolation Algorithm(TEA) should be proposed in Section 4. In the last section, the nu-

merical experiments are reported to support our theory.

In the following, the symbol C is used for a positive constant which may vary with the

context but is independent of the mesh size h.

2. New Estimates of Crank-Nicolson Scheme

In a cylindric domain Q = (0, T )× Ω we discuss a linear parabolic problem

ut = a2∆u + f(t, x), (t, x) ∈ Q, u(0, x) = ψ(x), u(t, x) = 0 on ∂Ω, (2.1)

and its weak formulation
∫ t

0

[(ut, v) +A(u, v)− (f, v)]dt = 0, v ∈ H1
0 (Ω), (2.2)

where the bilinear form

A(u, v) =

∫

Ω

a2DuDvdx,

is assumed to be bounded and H1
0 -coercive.

Take the time nodes tj = jk and elements Ij = (tj , tj+1), j = 0, 1, 2, ..., N, T = Nk,

The domain Ω is partitioned into quasi-uniform mesh Ωh = ∪ τ , denote linear finite element

subspace by

Sh = {v ∈ C(Ω), v|τ = linear, v|Γ = 0}.
Define the finite element solution U j(x) ∈ Sh satisfying Crank-Nicolson scheme

(

U j+1 − U j

k
, v

)

+ A

(

U j+1 + U j

2
, v

)

= (f j+1/2, v), v ∈ Sh, U0 = ψh. (2.3)

Following M.Wheeler[17](1973), we take the elliptic projection Rhu of u as a comparison

function,

A(u −Rhu, v) = 0, v ∈ Sh, ||u −Rhu|| ≤ Ch2||u(t)||2,
and decompose the error of the discrete solution U into

u− U = Ehu− θ, Ehu = u−Rhu, θ = U −Rhu.

It is easy to prove the following lemma.

Lemma 1. In the case of the quasi-uniform subdivision of Ω, the elliptic projection error

ρ = u−Rhu in a time interval Ij = (tj , tj+1) is estimated as follows,

||Ehu
j+1 − Ehu

j|| = ||
∫

Ij

ρtdt|| ≤ Ch2
∫

Ij

||ut||2dt ≤ Ckh2 max
tj≤t≤tj+1

||ut||2.
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In [22] (P.17) Thomee summarized some standard results. For example, the C-N scheme

has the error estimate

||u(tj)− U j || ≤ Ch2
(

||ψ||2 +
∫ tn

0

||ut||2dt
)

+ Ck2
∫ tn

0

(

||∆utt||+ ||uttt||
)

dt. (2.4)

in which the regularity requirement of u for space-discretization is optimal, but the regularity

of u for time-discretization is not optimal.

To decrease the regularity, we shall improve (2.4) in the following theorem.

Theorem 2.1. For θ = U −Rhu, there is the error estimate

||θn|| ≤ Ch2
∫ tn

0

||ut||2dt+ Ck2
(

(

∫ tn

0

||utt||21dt
)1/2

+

∫ tn

0

||ftt||dt
)

, (2.5)

in comparison with (2.4), where ||∆utt|| and ||uttt|| are replaced by ||utt||1 and ||ftt||, respec-
tively.

Proof. Firstly, for v ∈ Sh, integrating (2.2) in Ij by trapezoid and mid-point formulas

respectively, we have

(uj+1 − uj, v) +
k

2
A(uj+1 + uj, v) = k(f j+1/2, v) + rj1(v) + rj2(v), (2.6)

where the residues can be expressed in the form (or asymptotic expansion)

rj1(v) = O(k2)

∫

Ij

||ftt|| ||v||dt = c1k
2

∫

Ij

(ftt, v)dt+O(k3)

∫

Ij

||fttt|| ||v||dt,

rj2(v) = O(k2)

∫

Ij

||utt||1||v||1dt = c2k
2

∫

Ij

A(utt, v)dt +O(k3)

∫

Ij

||uttt||1||v||1dt.

Note that here we do not use uttt and Autt to denote ftt = uttt + Autt, as done in [22](p.17).

In the theory of partial differential equations, the regularity uttt, Autt ∈ L2(Q) requires higher

consistence of the data, whereas ftt ∈ L2(Q) is only differentiability of f .

Comparing (2.3) with (2.6), the error e = u− U satisfies the equation

(ej+1 − ej, v) +
k

2
A(ej+1 + ej, v) = rj1(v) + rj2(v).

Suppose e = u− U = Ehu− θ, and notice A(Ehu, v) = 0. Then θ satisfies

(θj+1 − θj , v) +
k

2
A(θj+1 + θj , v) = rjh(v), (2.7)

where rjh(v) = rj1(v) + rj2(v) + rj3(v),

rj3(v) = (Eh(u
j+1 − uj), v) =

∫

Ij

(Ehut, v)dt = O(h2)

∫

Ij

||ut||2||v||dt.

On the quasi-uniform mesh, rj3 has the following high order estimate in time

rj3(v)− rj−1
3 (v) = O(kh2)

∫

Ij+Ij−1

||utt||2||v||dt.
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Taking vj = θj+1 + θj(notice θ0 = 0), and summing over j, we have

||θn||2 + 1

2
|||v|||21 = r(v), |||v|||1 =

(

N
∑

j=0

||vj ||21k
)

1
2

, (2.8)

where

|r(v)| =
∣

∣

∣

∑

j

rjh(v)
∣

∣

∣
≤ Ck2

∫

J

(

||ftt|| ||v||+ ||utt||1||v||1
)

dt+ Ch2
∫

J

||ut||2||v||dt,

≤ Ck2|||utt|||1|||v|||1 +
(

Ck2
∫

J

||ftt||dt+ Ch2
∫

J

||ut||2dt
)

max
j≤n

||θj ||.

Using Young inequality, we can eliminate the right term |||v|||1. To eliminate the term ||θj ||,
we follow the method in [22]. Suppose ||θm|| = max

j≤n
||θj ||, n in Eq. (2.8) will be substituted by

m. Then the right term ||θm|| can be eliminated by using Young inequality. Finally owing to

||θn|| ≤ ||θm||, for any n we obtain the estimate (2.5). Hence Theorem 2.1 is established. �

Theorem 2.2 Assume that the partition of Ω is quasi-uniform and Un is the discrete solution

of C-N scheme. Then the time-difference of error e = u− U has high order error:

||(u− U)n − (u− U)n−1|| ≤ C(u)k(h+ k)2, (2.9)

where

C(u) ≤ C
(

max
t≤k

(||ftt||+ ||ut||2 + ||utt||2
)

+
(

∫

J

||uttt||21dt)1/2 +
∫

J

||fttt||dt
)

. (2.10)

Proof. In order to prove (2.9), the regularity requirement of (2.10) is higher than (2.5). By

(2.6), Eq. (2.7) can be written in the form of asymptotic expansion

(θj+1 − θj , v) +
k

2
A(θj+1 + θj , v) = g(v) + rkh(v), v ∈ Sh,

where the main part

g(v) = C1k
2

∫

Ij

((ftt, v) +A(utt, v))dt+

∫

Ij

(Ehut, v)dt,

and the residual of three order

|rkh(v)| ≤ Ck3
∫

Ij

(

||fttt|| ||v||+ ||uttt||1||v||1
)

dt+ Ckh2
∫

Ij

||utt||2||v||dt.

On the time level t1 = k, we temporarily assume that there holds

||θ1|| ≤ C(u)k(k + h)2. (2.11)

Because the space subdivision is not involved in the estimate (2.9), we consider the difference

of θj in time

ηj+1 = θj+1 − θj , θj+1 + θj − (θj + θj−1) = ηj+1 + ηj .

Using the two equalities obtained from Ij and Ij−1 give

(ηj+1 − ηj , v) +
k

2
A(ηj+1 + ηj , v) = δj(v) + rkh(v), (2.12)



188 H.L. HU, C.M. CHEN AND K.J. PAN

where

δj(v) =gj+1/2(v)− gj−1/2(v)

≤Ck(k2 + h2)

∫

Ij−1+Ij

(

(||fttt||+ ||utt||2)||v|| + ||uttt||1||v||1
)

dt.

Notice that the integrand has been included in rkh(v) without additional discussion. Now

taking vj = ηj+1 + ηj and summing (2.12) over j, we have

||ηn||2 + ν

2
|||v|||21

≤ ||η1||2 + Ck(k2 + h2)

(
∫

J

(||fttt||+ ||utt||2)dtmax ||vj ||+ |||uttt|||1|||v|||1
)

,

where η1 = θ1 − θ0 = θ1 can be bounded by (2.11). Note ||ηn|| = max
j≤N

||ηj ||, |||v|||1 and ||ηn||
can be eliminated by using Young inequality, we obtain

||θn − θn−1|| = ||ηn|| ≤ Ck(k + h)2,

We now come back to prove the estimate (2.11). Noting θ0 = 0, for j = 1 and taking v = θ1 in

(2.7), we have

||θ1||2 + k

2
||θ1||21 = rh(v), v ∈ Sh, (2.13)

where we have to use a stronger norm estimate

|rh(v)| ≤ C1k
(

k2 max
t≤k

(||ftt||+ ||utt||2) + h2 max
t≤k

||ut||2
)

||θ1||.

Finally, using (u − U)n = Ehu
n − θn, (2.13) and Lemma 1, we have (2.9). Consequently,

Theorem 2.2 holds. �

3. Direct CG-iteration (DCG)

Assume that Ω = (0, 1)2 is a square. Denote second order central difference δ2xu
j
i = uji+1 −

2uji + uji−1, and consider the Crank-Nicolson difference scheme at (xi, yl)

U j+1 − U j =
a2k

2h2

(

δ2xU
j+1 + δ2xU

j + δ2yU
j+1 + δ2yU

j
)

+ kf j+1/2. (3.1)

Denote the mesh-ratio r = a2k/(2h2). Then the scheme (3.1) can be written as linear system

AU j+1 = F (U j) = BU j + kf j+1/2,

where

AU j+1 ≡ U j+1 − r(δ2xU
j+1 + δ2yU

j+1), BU j ≡ U j + r(δ2xU
j + δ2yU

j).

To solve a discrete elliptic system AU = b, we know that the solution Un of the DCG has the

classical estimate

||Un − U ||A ≤ 2ρn||U0 − U ||A, ρ =

√

cond(A)− 1
√

cond(A) + 1
.
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For example, for five-point scheme of Poisson equation, denoting by h and n the step-length in

space and iteration count of CG respectively, the condition number of coefficient matrix A

cond(A) ≈ 1

2
h−2, so ρ ≈ 1− h, ρn ≈ e−nh,

i.e., taking n = h−1, the error will be contracted to 1/e.

However, for parabolic problem, we found numerically, when r > 4, the C-N scheme (3.1)

has smaller condition number

cond(A) ≈ 4r, r =
a2k

2h2
, if k = O(h),

So DCG has a better estimate as follows,

||Un − U ||A ≤ 2e−n/
√
r||U0 − U ||A,

√
r =

a

h

√

k

2
.

When n =
√
r, the error will be contracted to 1/e, which is better than the case of elliptic

problems.

Note that the parabolic problems require often to solve the linear systems on many time

levels, which may require more CPU-time. This is the new difficulty.

We take Direct CG-iteration (DCG) as a comparing mode:

• Un,0 = Un−1, with the error Un−1 − Un = O(k);

• CG-iterations Un,p = Sp(Un,0) are stopped by (control) residues

Res = ||F −AUn,p|| ≤ ǫ, Un = Un,p.

For Problem (2.1) with a = 1 and the exact solution u =
√
1 + t sin(πx) sin(πy), numerical

results obtained are shown in Table 3.1. Because the solution increases with time, we use

relative error and relative control residual. Here fix k/h, take T = nh = 3, and let the iteration

count of EXCMG on i− th level be 4 ∗ 4L−i, where L is the total number of levels.

Table 3.1: Comparison of DCG and EXCMG.

h 1/128 1/256 1/512 1/1024 remark

Unknowns 15K 65.5K 262K 1050K K = 103

k 1/100 1/200 1/400 1/800

n 300 600 1200 2400

ratio r = k/(2h2) 82 164 328 656 cond(A) ≈ 4r

EXCMG, relative error 4.96e − 5 1.24e − 5 3.10e − 6 7.70e − 7

ratio of error e — 4.00 3.99 4.03 e = O(k2 + h2)

EXCMG, CPU T1(s) 1.58 14.94 133.8 1270 p(r) ≈ 16

DCG, iteration count p(r) 26.6 40.1 55.5 81.5 p(r) ≈ O(
√
r)

DCG, CPU T2(s) 2.64 27.38 440 6070

T2/T1 1.67 1.83 3.29 4.78

The following observations can be made from Table 3.1:

• For the model problem, take L = 6, the iteration count of CG in EXCMG is about

p(r) ≈ 16 (to be converted into the finest grid), independent of r and control residue.
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• Direct CG-iteration (DCG) is acceptable when r < 700. The iteration count of DCG

p(r) ≈ O(
√
r) increases with r slowly .

• For parabolic problems, although EXCMG is four times faster than DCG when r = 700,

its advantages far less than the case of elliptic problems, so a wide research space in the

other algorithms remains.

4. Time-Extrapolation Algorithm (TEA)

Our new idea is to propose Time-Extrapolation Algorithm (TEA):

Step 1. use linear combination of previous l level solutions as an initial value

Un,0 = Il(U) ≡
l

∑

j=1

ajU
n−j, l = 3 ∼ 7. (4.1)

Step 2. take CG-iterations up to Res = ||F −AUn,p|| < ǫ.

By the function approximation, we take the following formula

un = 2un−1 − un−2 +O(k2), un = 3un−1 − 3un−2 + un−3 +O(k3), · · · .

For example, Thomee [22] (p.186) proposed to use the better initial value

Un,0 = 2Un−1 − Un−2, ||Un,0 − Un|| = O(k2),

“as a second order accurate extrapolation approximation to Un”, although he did not discuss

the computational efficiency. Numerical experiments show that this approach is not good (see

the results of 3D3L in Table 5.1). The reason is that both the combination coefficients and the

sum of the coefficients are larger so the rounding errors are continued to increase. Recall that

the contraction ratio of CG is only ρ ≈ e−1/
√
r.

We shall discuss (4.1) in the general framework. First, the error en of the C-N scheme is

decomposed into three parts [5]

en = Un − un = Cnk2 + ηn +O(k(k + h)2),

ηn = (u−Rhu)
n = O(h2), on quasiuniform grid,

and it is proved in Theorems 2.1 and 2.2 that

||en − en−1||, ||ηn − ηn−1|| ≤ Ck(k + h)2. (4.2)

Rewrite the exact solution Un as Un = un + en, and denote the iteration solution W j has

error W j − U j = ǫj . Then we have

W j = uj + ǫj + ej , j < n.

The extrapolation formula (4.1) provides an initial value

Un,0 = IlW =

l
∑

j=1

ajW
n−j = Ilu+ Ilǫ+ Ile,
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which has the error

Un − Un,0 = (un − Ilu)− Ilǫ + (en − Ile).

By (4.2), we obtain ||en − Il(e)|| ≤ Ck(k + h)2. The main error for Un,0 consists of two parts

||Un − Un,0|| ≤ ||un − Ilu||+ ||Ilǫ||+ O(k(k + h)2).

Therefore the study of TEA is related to three important issues:

1). Interpolation Ilu should have the accuracy of order m,

||un − Ilu|| ≤ Ckm, m = 2, 3,

and for u = tm, the residual of Ilu

(tl)
m − Il(t

m) =
(

lm −
l

∑

j=1

aj(j − 1)m
)

km = βmk
m,

should be smaller. In fact, m = 3 is better.

2). The errors ǫj are interpolated and transferred to the present level,

||Ilǫ|| = ||
l

∑

j=1

ajǫ
n+l−1−j || ≤ S max

1≤j≤l
||ǫn+l−1−j ||, S =

l
∑

j=1

|aj |.

Interpolation Ilǫ is of good stability, if and only if the coefficients |aj | and sum S should be as

smaller as possible. How to chose these coefficients aj is quite complicated.

3). How to control residues Res = ||F − AUn,p|| ≤ ǫ to guarantee that the devia-

tion(accuracy) satisfies

Er = ||Un,p − Un|| < ||Un − u|| = e0 (basic error).

5. Numerical Examples

In a cylindric domain Q = (0, 1)2 × (0, T ) we consider

ut = a2∆u+ f(x, t), u(x, 0) = ψ(x), u(x, t) = 0 on ∂Ω,

with an increasing-type solution

u = (1 + t)1/2 sinπx1 sinπx2, a = 1.

Taking the step-length

k = 0.01, h = 1/N, N = 128, 256, 512, max r =
a2k

2h2
≈ 1311.

we discuss the Crank-Nicolson difference scheme.

Below we take DCG as a comparing mode. Compare the extrapolation formulas of order m

and level l,

2D2L : Wn = [2,−1], S = 3, β2 = 2; bad

2D3L− 1 : Wn = [1.5,−0.5], S = 2, β2 = 3; not good

2D3L : Wn = [1, 1,−1], S = 3, β2 = 4; not good

3D3L : Wn = [3,−3, 1], S = 7, β3 = 6; bad

3D4L : Wn = [2, 0,−2, 1], S = 5, β3 = 12;

3D5L : Wn = [1.25, 1.25,−1.25,−1.25, 1], S = 6, β3 = 22.5;

3D6L : Wn = [1, 1, 0,−1,−1, 1], S = 5, β3 = 36; good

3D7L : Wn = [1, 1,−0.95, 0.9,−1,−0.9, 0.95], S = 6.7, β3 = 47.4. better
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In the calculation for long time, first we obtain the approximate solutions for first 10-20

levels by DCG, then use TEA. For first 10-20 levels, DCG has a faster convergence rate and

higher precision. Later with TEA iteration, the precision is reduced and a cyclical oscillations

of accuracy are generated, which is disadvantageous to reduce the number of iterations. For this

reason, we adopt different control accuracy for first 10-20 levels and later levels. For example,

Res = (e − p, e − (p + 1)) means that DCG iterations use Res = 10−p, and TEA iterations

Res = 10−(p−1). It should be noted that less iterations are required with Res = (e−3, e−4), but

it does not reach the accuracy of the finite difference solution; the accuracy requirement is too

high with Res = (e−5, e−6), which increases the iteration count; therefore Res = (e−4, e−5)

is more appropriate.

For 0 ≤ t ≤ 5, we have compared the numerical results for several algorithms in Table 5.1.

Table 5.1: Average iteration counts for DCG and TEA algorithms with fixed k = 0.01 and T = 5s.

1/h Res DCG 2D2L 2D3L 3D3L 3D4L 3D5L 3D6L 3D7L*

128 e− 3, e− 4 23.8(5.0s) 5.8 5.1 14.8 9.6 10.5 8.3 6.7

e− 4, e− 5∗ 23.7(3.6s) 15.7 17.4 14.9 10.0 11.1 9.1 7.8*

e− 5, e− 6 23.2(4.7s) 27.9 22.7 16.3 11.6 13.4 11.9 11.9

256 e− 3, e− 4 47.3(33.3s) 13.6 12.1 30.4 19.5 22.4 16.5 13.6

e− 4, e− 5∗ 47.4(31.4s) 36.0 37.8 30.5 20.1 22.7 19.6 15.4*

e− 5, e− 6 46.6(34.4s) 56.5 45.6 33.2 23.7 27.9 25.9 27.5

512 e− 3, e− 4 95.8(334s) 31.6 31.9 60.4 39.7 43.2 35.9 28.2

e− 4, e− 5∗ 95.1(335s) 79.8 81.7 61.4 40.9 45.5 36.5 34.3*

e− 5, e− 6 93.0(333s) 114 91.2 67.3 51.5 58.0 53.7 57.0

It is observed from Table 5.1 that

1. Different control residues have little effect on the number of iterations of DCG, but a

great influence on the number of iterations of the TEA;

2. The 2-order formulas are generally not good. The 3-order formula 3D3L is also not

good, because two largest coefficients ±3 in the formula seriously enlarge the rounding errors

of approximate solution on former three levels, which requires more iterations;

3. Third order formula 3D6L and 3D7L, whose coefficient |aj| ≤ 1, are relatively good.

Especially for 3D7L, its coefficients have some antisymmetry and CG iterations count can be

reduced to 1/3 of DCG’s. We should find better extrapolation formulas.

6. Conclusions

Summarizing above results, we have the following conclusions:

1. For linear parabolic problems, Direct CG-iteration(DCG) is acceptable when r < 700, the

iteration count p(r) ≈ O(
√
r) increases slowly with r. Although EXCMG is four times faster

than DCG, its advantages far less than the elliptic case;

2. The iteration count of EXCMG is almost unchanged when r changes in a large range.

EXCMG is significantly better than the DCG only when r ≥ 2000;

3. TEA is a universal algorithm, very simple, only extrapolation in time needed, independent

of space. Therefore, it is effective for the quasi-uniform grid in space (what important is that

only the finest grid is needed), independent of the dimension of space;
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4. With a good initial value, TEA will be more favorable for nonlinear parabolic problems

[4, 5], only one Newton iteration and re-calculating of the stiffness matrix in every time level

are needed. Therefore TEA is so simple, equivalent to solve a linear problem with variable

coefficients.
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