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1 Introduction

In 1982, R. Hamilton introduced the Ricci flow [3] to the world of mathematics. In this
seminal work [3], among other things, R. Hamilton proved that when the manifold M is
compact, the Ricci flow has a solution for a short time. In 1989, W.X. Shi [10] extended the
short time existence result to complete noncompact manifolds with bounded curvature.

In this paper, we will revisit the problem of existence of the Ricci flow. We attempt to
show that, on a general manifold, the bounded curvature condition in Shi’s theorem can
not be dropped. More precisely, one can show the following:

Theorem 1.1. There is a smooth complete κ−noncollapsed three-dimensional Riemannian man-
ifold (M,gij) such that it admits no complete and κ−noncollapsed smooth solution to the Ricci
flow for a short time with (M,gij) as initial data.

Here, we say a Riemannian manifold of dimension n is κ−noncollapsed if there is
a positive constant κ > 0 such that for any x0 ∈ M with |Rm| ≤ r−2 on B(x0,r), we have
vol(B(x0,r))≥ κrn. A solution to the Ricci flow is said to be κ−noncollapsed (see [7]
section 8) if for any spacetime point (x0,t0) such that |Rm| ≤ r−2 on Bt(x0,r) for any t∈
[t0−r2

0,t0], we have vol(Bt0(x0,r))≥κrn.
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We remark that in the above theorem, besides the completeness of the metric, a κ−
noncollapsed condition was imposed on the solutions. We expect that this technical con-
dition could be removed.

It is well-known that the Ricci flow on spheres of dimension n with initial metric of
constant curvature K will shrink the spheres to a point at time T= 1

2(n−1)K
. A tiny sphere

will shrink to a point in short time. Intuitively, we can imagine that the Ricci flow on a
manifold with many tiny necks Nj whose cross spheres have radius rj →0 can not move
for any short time. The purpose of this paper is trying to provide such an example.

Note that it is a nontrivial issue to control the behavior of the individual spheres or
necks on the manifold during the evolution. In this paper, instead of dealing with each
individual spheres, our idea is to choose and investigate the minimal surfaces in the ho-
motopy classes of those spheres. The point is that we do not need to care about the shape
of the minimal surfaces, we only care about their existence. Because whenever these min-
imal surfaces exist, their areas can be used to estimate the life span of the solution. Now
the difficulty of the problem is to prove the existence of minimal surfaces which must be
confined in some specific regions.

The minimal surface argument in Ricci flow was first used by Hamilton [4, 5], who
proved the incompressibility of certain boundary tori of hyperbolic pieces in the long
time nonsingular solutions. In [1] and [9], the argument with min-max constructions
of minimal surfaces was used to prove the finite time extinction for the Ricci flow on
homotopy three-spheres.

In the present paper, we will use [6] to construct minimal surfaces in certain domains.
The difficulty is to prove that the boundaries of these domains are convex or mean convex
for the evolving metrics. Ultimately, this will amount to certain technical local a priori
curvature estimate, which is the main difficulty of the paper to overcome.

The paper is organized as follows. In Section 2, we first give the construction of
the manifolds, then we outline the proof of nonexistence of the Ricci flow, modulo key
Lemma 2.2. In Section 3, we prove Lemma 2.2.

2 Examples

2.1 Construction

We will construct a warped product metric on cylinder M =R×Sn−1 in the form ds2 =
dr2+ f 2(r)ds2

Sn−1 , where f (r) is a positive even smooth function on R.

Let X1,X2,··· ,Xn−1 be an orthogonal basis of M tangent to the sphere Sn−1 and T= ∂
∂r .

It is well-known that
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R(T,Xi,T,Xj)=− f ′′

f
〈Xi,Xj〉,

R(Xi,Xj,Xk,Xl)=
1− f ′2

f 2
(〈Xi,Xk〉〈Xj,Xl〉−〈Xi,Xl〉〈Xj,Xk〉), (2.1)

R(T,Xi,Xj,Xk)=0.

In order that the constructed metric has required curvature growth property, let us
arbitrarily fix two increasing sequences of positive numbers {ai}∞

i=1 and {bi}∞
i=1 such that

lim
i→∞

ai=+∞, lim
i→∞

bi=+∞. For these sequences, we construct a sequence of smooth positive

functions 0< ϕi ≤ bi on [0,bi] for i≥1, which is increasing on [0, bi
2 ], decreasing on [ bi

2 ,bi],
such that

ϕi(r)=























































1

ai+100
, r∈

[

0,
1

2

]

,

r, r∈
[

3

4
,
bi

2
−1

]

,

bi−r, r∈
[

bi

2
+1,bi−

3

4

]

,

1

ai+1+100
, r∈

[

bi−
1

2
,bi

]

.

(2.2)

Clearly, we may choose ϕi such that |ϕ′
i|+|ϕ′′

i |≤C, where the constant C is independent
of i. Now we define a positive even function f (r) on R in the following way. Define
f (r)= ϕ1(r) on [0,b1] and inductively

f (r)= ϕi

(

r−
i−1

∑
j=1

bj

)

, r∈
[

i−1

∑
j=1

bj,
i

∑
j=1

bj

]

(2.3)

for positive integer i≥2.
By (2.1), we see that the curvature satisfies |Rm|≤ C

f 2 , hence for some point x0∈{0}×
Sn−1, we have

sup

B(x0,
i−1

∑
j=1

bj)

|Rm|(x)≤C(ai+100)2, for all 0< i<+∞. (2.4)

By direct computations, we find that the scalar curvature satisfies

R=(n−1)

[

(n−2)
1− f ′2

f 2
−2

f ′′

f

]

. (2.5)

Note that we may choose f such that if for some point r0 satisfying | f ′(r0)|≥ 1
2 , then we

have f (r0)≥ 1
C′ , where C′ is a uniform positive constant.

Combining this observation and (2.5), we have
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Lemma 2.1. When n≥3, for the metric constructed above, the scalar curvature is bounded from
below, i.e.

R≥−C. (2.6)

In the next section, we will prove that when n= 3, the manifold constructed above
admits no short time smooth complete and κ-noncollapsed solution to the Ricci flow.

2.2 Proof of the nonexistence theorem

The proof of Theorem 1.1 is an argument by contradiction. Let (M,g) be the Riemannian
manifold constructed in Section 2.1 of dimension n=3. Suppose there is a smooth com-
plete and κ-noncollapsed solution to the Ricci flow for a short time [0,T0] (T0 > 0) with
(M,g) as initial data.

Let I be an interval in R, here and in the followings, we denote the corresponding
region on the manifold by MI . For example, M[a,b]=[a,b]×S2⊂M and M{r0}={r0}×S2⊂
M.

Since for j∈N, the regions M
[
j−1

∑
i=1

bi+
bj
8 ,

j−1

∑
i=1

bi+
3bj
8 ]

and M
[−

j−1

∑
i=1

bi−
3bj
8 ,−

j−1

∑
i=1

bi−
bj
8 ]

are flat annu-
luses at time t=0, they have a short time so that the curvature is bounded. Actually we
claim the following lemma holds:

Lemma 2.2. There are constants C=C(κ) depending only on κ, and j0 > 0 such that as j> j0,
we have

|Rm|(x,t)≤1, (2.7)

for (x,t)∈M
[
j−1

∑
i=1

bi+
bj
8 ,

j−1

∑
i=1

bi+
3bj
8 ]
∪M

[−
j−1

∑
i=1

bi−
3bj
8 ,−

j−1

∑
i=1

bi−
bj
8 ]×[0,min{T0, 1

C(κ)
}].

The proof of the above lemma will be given in the next section. We proceed to derive
the convexity estimate of the relevant regions.

By local gradient estimate of Shi [10], we have

|∇Rm|(x,t)≤ C(n)

t
1
2

, (2.8)

for (x,t)∈M
[
j−1

∑
i=1

bi+
bj
8 +1,

j−1

∑
i=1

bi+
3bj
8 −1]

∪M
[−

j−1

∑
i=1

bi−
3bj
8 +1,−

j−1

∑
i=1

bi−
bj
8 −1]

×[0,min{T0, 1
C(κ)

}].

Now we only consider the piece M
[
j−1

∑
i=1

bi+
bj
8 +1,

j−1

∑
i=1

bi+
3bj
8 −1]

. Since the initial metric on the

above region is flat and it has the form dr2+(r−c)2ds2
S2 , where c=

j−1

∑
i=1

bi. It is obvious that

at t=0
∇0α∇0β(r−c)2=2gαβ(·,0)
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on M
[
j−1

∑
i=1

bi+
bj
8 +1,

j−1

∑
i=1

bi+
3bj
8 −1]

.

By combining with (2.7) and (2.8), we have

∇α∇β(r−c)2≥2gαβ(·,0)−C(n)
√

tgαβ,

for any t∈ [0,min{T0, 1
C(κ)}] and c+

bj

8 +1≤ r≤ c+
3bj

8 −1.

Without loss of generality, we may assume that T0<
1

C(κ)
and T0 is small. This implies

∇α∇β(r−c)2≥ gαβ, (2.9)

for any t∈[0,T0] and c+
bj

8 +1≤r≤c+
3bj

8 −1. Obviously, the similar result also holds for the

other piece where −(c+
3bj

8 −1)≤r≤−(c+
bj

8 +1). We have proved the following lemma.

Lemma 2.3. The regions M
[−

j−1

∑
i=1

bi−
bj
8 −1,

j−1

∑
i=1

bi+
bj
8 +1]

have convex boundaries for any t∈ [0,T0] and
j> j0, where j0 is the constant in Lemma 2.2.

In the following, we will use the minimal surface argument. First of all, we need
the existence of the minimal surfaces. Clearly, for each j ≥ 2, at time t = 0, there is a

smooth minimal surface Σj in M
[−

j−1

∑
i=1

bi−
bj
8 −1,

j−1

∑
i=1

bi+
bj
8 +1]

, with area ≤ C
aj

2 . Actually, by the

construction of the metric, we may take Σj = M
{

j−1

∑
i=1

bi}
. We denote by Aj(t) the minimum

of the areas of smooth surfaces homotopic to Σj in M
[−

j−1

∑
i=1

bi−
bj
8 −1,

j−1

∑
i=1

bi+
bj
8 +1]

at time t.

Lemma 2.4. For any fixed j> j0, and time t∈ [0,T0], there exists a smooth minimal surface Σj(t)

in the interior of M
[−

j−1

∑
i=1

bi−
bj
8 −1,

j−1

∑
i=1

bi+
bj
8 +1]

achieves Aj(t) in the homotopy class of Σj.

Proof. By Lemma 2.3, the domain M
[−

j−1

∑
i=1

bi−
bj
8 −1,

j−1

∑
i=1

bi+
bj
8 +1]

has convex boundaries

M
{−

j−1

∑
i=1

bi−
bj
8 −1}

and M
{

j−1

∑
i=1

bi+
bj
8 +1}

for any t∈ [0,T0]. Then we know that a smooth minimal
surfaces Σj(t) exists from [6].

Lemma 2.5. There is a constant C>0 such that

R(x,t)≥−C, for all (x,t)∈Mn×[0,T0]. (2.10)

Proof. This follows from Corollary 2.3 in [2].
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For any fixed t0 ∈ [0,T0], we may compute the rates of the area changes of the fixed
Σj(t0) under the Ricci flow (see [5], section 11):

d

dt
areat(Σj(t0)) |t0 =−

∫

Σj(t0)

1

2
(R+|A|2)+G

≤−4π− 1

2

∫

Σj(t0)
R

≤−4π+
C

2
areaΣj(t0)

(2.11)

where we have used Gauss-Bonnet theorem and (2.10). Here A and G denote the second
fundamental form and the Gaussian curvature of Σj(t0) respectively.

Then for any t0∈ [0,T0], we have

d+

dt
Aj(t) |t=t0 := limsup

△t→0

Aj(t0+△t)−Aj(t0)

△t

≤ d

dt
areat(Σj(t0)) |t0

≤ −4π+
C

2
areaΣj(t0)

= −4π+
C

2
Aj(t0).

(2.12)

By combining Aj(0)≤ C
aj

2 and (2.12), we see that there is j1 > 0 such that as j> j1, for

any t∈ [0,T0] we have

0<Aj(t)≤
C

aj
2
−2πt.

This implies

T0≤
C

2πaj
2

, for any j> j1.

Since aj →∞, we conclude that T0 = 0. This is a contradiction. We complete the proof of
the Theorem 1.1 modulo Lemma 2.2.

3 Proof of Lemma 2.2

Now we recall the useful local curvature pinching estimate proved in [2].

In dimension 3, let λ≥µ≥ν be the eigenvalues of the curvature operator Mij=Rgij−
2Rij.



B.L. Chen and H.L. Gu / J. Math. Study, 49 (2016), pp. 1-12 7

Proposition 3.1. For any k∈Z+ , 0< δ<1, there is a constant Ck,δ >0 depending only on
k and δ satisfying the following property. Suppose we have a smooth solution gij(x,t)
to the three dimensional Ricci flow, such that for any t∈ [0,T], Bt(x0,Ar0) are compactly
contained in the manifold and assume that Ric(x,t)≤(n−1)r−2

0 for x∈Bt(x0,r0), t∈ [0,T].
Then we have

λ+µ+kν≥min

{

− Ck,δ

t+ 1
Kk

,−Ck,δ

Ar2
0

}

, (3.1)

whenever x∈Bt(x0,(1−δ)Ar0), t∈ [0,T], where λ+µ+kν≥−Kk on B(x0,Ar0) at time 0.

By choosing x0= x̃, r0=1, A= 3
16 bj, and δ= 1

100 in the above proposition, we have

Proposition 3.2. For any k∈Z+, there is a constant Ck>0 depending only on k such that

(λ+µ+kν)(x,t)≥−Ck

bj
, (3.2)

for x∈Bt(x̃, 5
32 bj), t∈ [0,T], and x̃∈M

{
j−1

∑
i=1

bi+
bj
4 }

.

To state the following lemma, we need the notion of canonical neighborhood (see [8])
which is important in the singularity analysis of Ricci flow on 3-d manifolds. We say
a spacetime point (x,t) has a canonical neighborhood (with accuracy ε) if the parabolic

neighborhood ∪
s∈[t− ε−2

R(x,t)
,t]

Bs(x, ε−1√
R(x,t)

)×{s} (after normalizing the solution with the fac-

tor R(x,t) and shifting the time t to 0) is ε− close (in C[ 1
ε ] topology) to the corresponding

subset of some ancient κ− solution. Geometrically, for fixed time, these canonical neigh-
borhoods are long necks or caps with long neck ends. It is known (see [8]) that there is a
positive constant C(ε) depending only on ε such that lim

ε→0
C(ε)=0 and

volt(Bt(x,r))≤C(ε)rn (3.3)

where r= ε−1√
R(x,t)

.

Lemma 3.1. For any given ε>0, there is a constant K>0 depending only on κ and ε such that
for any (y,t)∈M×[0,T0], one of the followings holds:

(1) |Rm|(y,t)≤ K
t ;

(2) the point (y,t) has a canonical neighborhood with accuracy ε.

Proof. We argue by contradiction.

Suppose there exist ε> 0 and a sequence of points yj ∈ M with |Rm|(yj,tj)≥ Kj

tj
and

Kj→∞, but the points (yj,tj) have no canonical neighborhoods with accuracy ε.
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From each point (yj,tj) with |Rm|(yj ,tj)≥ Kj

tj
, we use Perelman’s point picking tech-

nique (see section 10 in [7]) to find another point (ȳj, t̄j) with Qj = |Rm|(ȳj, t̄j)≥ Kj

t̄j
, such

that the conclusion of the proposition fails at (ȳj, t̄j), but holds for any point (y,t) with

|Rm|(y,t)≥2Qj and dt(y,ȳj)≤dt̄j
(yj,ȳj)+K

1
2
j Q

− 1
2

j , t̄j− 1
4 KjQ

−1
j ≤ t≤ t̄j.

We rescale the solution around (ȳj, t̄j) with factor Qj and translate the time t̄j to zero so
that it is still a solution to the Ricci flow. We will show that after passing to a subsequence,
the rescaled solutions will converge to a smooth complete ancient κ−solution. This will
give a contradiction.

Recall that, we assume our solution is κ−noncollapsed. By using Hamilton’s com-
pactness, we may extract a subsequence which converges on the spacetime regions with
uniformally (independent of j) bounded curvature. In order to adapt the whole argu-
ment of [7] (section 12) to the present case, we observe that it suffices to show that the
convergent limit (on the regions where it exists) always has nonnegative sectional curva-
ture. To prove this, we use our local pinching estimate (3.1). Putting A=∞ and Kk=∞ in
Proposition 3.1, we know

(λ+µ+kν)(t)≥−Ck

t

holds whenever t∈ [0, t̄j ] for the unrescaled solution. For the rescaled solution, we have

(λ+µ+kν)(s)≥− Ck

Qj t̄j+|s|

whenever s∈ [−Qj t̄j,0]. Since Qj t̄j ≥Kj →∞, we know the convergent limit satisfies

(λ+µ+kν)≥0.

The arbitrariness of k implies ν≥0, i.e. the limit has nonnegative sectional curvature.

The purpose of this section is to prove Lemma 2.2. For simplicity, we only show the

estimate for the pieces with r>0. For any j∈N, let Mj= M
[
j−1

∑
i=1

bi+
bj
8 ,

j−1

∑
i=1

bi+
3bj
8 ]

, Sj=M
{

j−1

∑
i=1

bi+
bj
4 }

.
Now we fix a very small ε>0 and a constant K=K(ε) in Lemma 3.1. Set

tj =min
x̃∈Sj

max

{

t∈ [0,T0] : s|Rm|(x,s)≤2K, ∀ds(x, x̃)≤ bj

7
, ∀s∈ [0,t]

}

. (3.4)

By smoothness of the solution, we know tj > 0 for each j. Recall Theorem 3.1 in [2]
says the following:

Theorem 3.1. ([2]) There is a constant C=C(n) with the following property. Suppose we have
a smooth solution to the Ricci flow (gij)t =−2Rij, 0 ≤ t ≤ T, on an n-manifold M such that
Bt(x0,r0), for 0≤ t≤T, is compactly contained in M and
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(i) |Rm|≤ r−2
0 on B0(x0,r0) at t=0;

(ii)

|Rm|(x,t)≤ D

t

where D≥1, whenever dt(x0,x)< r0 and 0≤ t≤T.

Then we have

|Rm|(x,t)≤ eCD(r0−dt(x0,x))−2

whenever dt(x0,x)=distt(x0,x)< r0 and 0≤ t≤T.

By Theorem 3.1, we have

|Rm|(x,t)≤ eC(n)K

(

bj

7
−dt(x, x̃)

)−2

(3.5)

whenever x̃∈Sj, dt(x, x̃)≤ bj

7 and t∈ [0,tj ].
From (3.5), Lemma 2.2 can be proved immediately if one can show that tj is bounded

from below by a positive constant independent of j.

Actually, we will show that tj =T0 for all large j. Suppose the contrary holds, we will
find a contradiction in the rest of the paper.

Let (x̄,tj) be a point achieving the minmax in the definition (3.4), i.e., |Rm|(x̄,tj) =
2K
tj

and there is a point x̃ ∈ Sj such that dtj
(x̄, x̃)≤ bj

7 , moreover we have |Rm|(x,s)≤ 2K
s

whenever ds(x̃,x)<
bj

7 and 0≤ t≤ tj.

By (3.5), we have

K

tj
≤ eCK

(

bj

7
−dtj

(x̄, x̃)

)−2

.

This implies

0≤ bj

7
−dtj

(x̄, x̃)≤ e
CK
2√
K

√

tj.

Let γ(s) be a minimal geodesic at time tj connecting x̄ and x̃ of length dtj
(x̄, x̃), γ(0)=

x̄. Then (3.5) implies

|Rm|(x,tj)≤4eCKs−2, (3.6)

for all x∈Btj
(γ(s), s

2).
For x∈Btj

(γ(s), s
2), t∈ [0,tj ], we have (see Lemma 8.3 in [7])

d

dt
dt(x̃,x)≥−C(n)

√

K

t
,



10 B.L. Chen and H.L. Gu / J. Math. Study, 49 (2016), pp. 1-12

as long as dt(x̃,x)<
bj

7 , where C(n) is a constant depending only on the dimension n=3.
This implies

db(x̃,x)≤ bj

7
− 1

2
s+2C(n)

√

Ktj ,

as long as dt(x̃,x)<
bj

7 for any t∈ [b,tj ].
From above estimate, we know

dt(x̃,x)≤ bj

7
− 1

2
s+2C(n)

√

Ktj <
bj

7

for all (x,t)∈Btj
(γ(s), s

2)×[0,tj] if 4C(n)
√

Ktj< s<dtj
(x̃, x̄).

It follows from (3.5) that

|Rm|(x,t)≤ eCK

(

1

2
s−2C(n)

√

Ktj

)−2

(3.7)

on Btj
(γ(s), s

2 )×[0,tj] whenever 4C(n)
√

K
√

tj < s<dtj
(x̃, x̄).

By the Ricci flow equation and (3.7), we know

e−CeCKs−2tj gij(x,0)≤ gij(x,t)≤ eCeCKs−2tj gij(x,0) (3.8)

on Btj
(γ(s), s

2)×[0,tj], for 8C(n)
√

Ktj<s<
bj

16 . Note that Btj
(γ(s), s

2)⊂B0(x̃,
bj

7 ) and gij(x,0)

is Euclidean on B0(x̃,
bj

7 ). This implies

voltj

(

Btj

(

γ(s),
s

2

))

≥ e−CeCKs−2tj α(n)(
s

2
)ne−CeCKs−2tj (3.9)

where α(n) is the volume of unit ball in the Euclidean space. Hence,

voltj

(

Btj

(

x̄,
3s

2

)

)

≥α(n)(
s

2
)ne−CeCKs−2tj , (3.10)

whenever 8C(n)
√

Ktj < s<
bj

16 .
Scaling the solution around (x̄,tj) by the factor tj, so that we get a family of solutions

to the Ricci flow g̃j(τ)=
1
tj

g(tjτ) for τ∈ [0,1]. We claim:

Lemma 3.2. As j→∞, the pointed family of the solutions g̃(τ) will converge to a smooth complete
solution g̃(τ) to the Ricci flow on some pointed manifold M̃ with nonnegative sectional curvature
and maximal volume growth, for τ∈ (0,1].

Proof. By using Lemma 3.1, we know that any point with curvature greater than K
t for the

unrescaled solution will have a canonical neighborhood structure. Because we scale the
solution with the factor tj, one can prove (see section 12 in [7]) that the rescaled solutions
at time τ=1 will have bounded curvature on any fixed bounded distance. The curvature
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can also be shown to be uniformally bounded on τ = 1. The solution can be extended
backward to whole interval (0,1]. The reason is that any point (x,τ) in the limit with
curvature |Rm|(x,τ)τ >K is a limit of points which have canonical neighborhoods with
suitable curvature control. Here the key point is that the limit has nonnegative sectional
curvature on the region where the limit exists.

To prove that M̃ has nonnegative sectional curvature, we note that for any fixed m>1,

and each time t∈ [0,tj ], Bt(x̄,m
√

tj)⊂Bt(x̃,
3bj

16 )⊂Bt(x̃,
7bj

32 ) for large j. Since B0(x̃,
7bj

32 ) is flat
at t=0, by pinching estimate (3.2), we know

λ+µ+kν≥−Ck

bj

for the unrecaled solution. For the rescaled solution, we have

λ+µ+kν≥−Cktj

bj
.

Let j→∞, we find ν≥0 on the limit. That is to say, the limit M̃ has nonnegative sectional
curvature for any τ∈ (0,1].

For any large and fixed m> 1, let s=m
√

tj in (3.10), and let j→∞, we know that at
time τ=1,

vol1

(

BM̃

(

O,
3m

2

)

)

≥α(n)
(m

2

)n
e−CeCKm−2

, (3.11)

where O is the origin of M̃. This implies

lim
m→∞

vol1(BM̃(O,m))

mn
≥ 1

3n
α(n). (3.12)

Since the curvature of M̃ is nonnegative, by the volume comparison theorem, we have

vol1(BM̃(O,m))

mn
≥ 1

3n
α(n) (3.13)

for any m≥0.

Proof of Lemma 2.2. Note that the origin O has curvature 2K at time τ = 1, hence it has a
canonical neighborhood of accuracy ε. Combining (3.13) and (3.3), we get

C(ε)≥ 1

3n
α(n),

which is a contradiction for small ε since lim
ε→0

C(ε)=0. This contradiction shows that the

curvature bound 2K(ε)
t can never be achieved in (3.4) for large j. That means tj = T0 for

large j. Then Theorem 3.1 gives us the required curvature estimate.
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