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Abstract

Feature lines are fundamental shape descriptors and have been extensively applied to

computer graphics, computer-aided design, image processing, and non-photorealistic ren-

dering. This paper introduces a unified variational framework for detecting generic feature

lines on polygonal meshes. The classic Mumford-Shah model is extended to surfaces. Us-

ing Γ-convergence method and discrete differential geometry, we discretize the proposed

variational model to sequential coupled sparse linear systems. Through quadratic polyno-

mials fitting, we develop a method for extracting valleys of functions defined on surfaces.

Our approach provides flexible and intuitive control over the detecting procedure, and is

easy to implement. Several measure functions are devised for different types of feature

lines, and we apply our approach to various polygonal meshes ranging from synthetic to

measured models. The experiments demonstrate both the effectiveness of our algorithms

and the visual quality of results.

Mathematics subject classification: 65D18.
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1. Introduction

In computer graphics, computer-aided design and image processing, a feature is an individual

measurable heuristic property of the object being observed and is relevant for solving the

computational task related to a certain application. For many applications, the feature detection

is a key ingredient built on which other high-level tasks can be further performed. In this

paper, the term of “feature line” is very general and may refer to sharp features (also known

as creases), ridges and valleys, and contours (also known as silhouettes) and so on. These

features are powerful shape descriptors which are widely used for surface reconstruction, mesh

filtering, shape matching, interrogation, and non-photorealistic rendering purposes, and have

gained much attention in recent years.

* Received April 13, 2014 / Revised version received June 23, 2015 / Accepted October 24, 2015 /

Published online January 18, 2016 /



88 W.H. TONG AND X.C. TAI

1.1. Previous work

To detect sharp features such as creases and corners, Hoppe et al. [1] devised an energy

function that captures the number of vertices in the control mesh, their connectivity, their

positions, and the number and locations of sharp features. They solved the optimization prob-

lem by decomposing it into two nested subproblems: an inner continuous optimization over

the control vertex positions and an outer discrete optimization over the sharp edges. Unfortu-

nately, their method is global, complicated and time-consuming. Contrarily, Kobbelt et al. [2]

recognized the sharp features directly using some simple but effective heuristic rules based on

clustering of normals. Also, Ohtake et.al [3] employed the same method so as to reconstruct

the sharp features of points cloud. Their methods are straightforward to implement, but suffer

from the choice of the threshold parameters and the sensitivity to noise. To overcome the

latter shortcoming, robust statistic technique was introduced independently by Jones et al. [4]

and Fleishman et al. [5]. They estimated smoothness of a surface using different local surface

predictors, which make the main difference between theirs work. Based on robust estimation of

vertex positions and smoothness, the bilateral filter [6] was applied to surface denoising while

preserving features. They determined a vertex on a sharp edge by the intersection of two planes.

Using the forward-search paradigm, Fleishman et al. [7] proposed a robust moving least-squares

technique for reconstructing a piecewise smooth surface from a potentially noisy points cloud.

In their work, sharp features were handled by treating the points across sharp features as out-

liers. Recently, Fan et al. [8] presented a feature-preserving mesh denoising algorithm in the

same spirit. They identified piecewise smooth sub-neighborhoods using a robust density-based

clustering algorithm over shared nearest neighbors, and adopted second-order bilateral filters.

A common character of robust statistic-based methods is that they detect and utilize sharp

features locally and implicitly. The problems of representing and recovering sharp features on

various types of surfaces also have been studied by many authors, such as [9-13].

Mathematically, ridges and valleys are defined as lines on a surface where the principal

curvatures attain extrema along their associated principal directions. They were first investi-

gated by Gullstrand, 1911 Nobel Laureate in Medicine, who applied the methods of physical

mathematics to the study of optical images and of the refraction of light in the eye. During

the last century, ridges and valleys have been extensively studied in connection with researches

on classical differential geometry and singularity theory [14], analysis of medical images [15],

face recognition [16], and quality control of free-form surfaces [17] etc. In the past decade,

there has been considerable effort to develop methods for extracting ridge-valley structures

on polygonal meshes. Based on linear interpolation and non-maximum suppression technique,

Belyaev et al. [18] presented a method for ridges and valleys detection on range images and

triangular meshes. In order to achieve stable results, they employed a coupled nonlinear dif-

fusion procedure to smooth the position and normal of vertices. Using a scheme from discrete

differential geometry and a smoothing filter for higher-order surface derivatives, Hildebrandt

et al. [19] provided an efficient way for feature lines detection. Along a different line, Ohtake

et al. [20] fitted a multi-level implicit surface to the given polygonal mesh in advance. The

curvature tensor and curvature derivatives at a mesh vertex are then estimated by those at

the corresponding implicit surface point. In [21], they proposed a sparse representation SLIM

for approximating a set of scattered points. The SLIM allows to estimate high order surface

derivatives simply, which leads to a effective feature detection technique. For the purpose of

accelerating the computation of principal curvatures and their derivatives, Kim et al. [22] and

Yoshizawa et al. [23] utilized modified MLS (moving least squares) and local cubic polynomial
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approximations respectively. Further, Yoshizawa et al. [24, 25] developed a fast and faithful

geometry-based finite difference method, which avoids surface fitting procedure. All of these

methods highly rely on a high-quality estimation of high-order surface derivatives. Recently,

Lai et al. [26] presented a method for feature lines extraction, which employed the integral

invariants of geodesic circles approximation in the feature-sensitive metric.

In the area of non-photorealistic rendering (NPR), contours have been investigated for many

years [27, 28] due to theirs salience and view dependence. Markosian et al. [29] presented a

randomized algorithm that can find the majority of visible silhouette edges at interactive rates.

Their algorithm is based on the observation that only a small fraction of mesh edges are visible

silhouette edges. Hertzmann et al. [30] described a method for computing silhouettes of smooth

surfaces. They determined silhouette curves as zero-crossings of the dot product of the normal

with the view direction. For conveying shape in an indirect way, DeCarlo et al. [31] introduced

the suggestive contour which are curves on the shape that might be silhouettes in nearby views.

They calculated them by finding the zero crossings of the radial curvature. In [32], they further

developed two new families of lines: suggestive highlights and principal highlights. An excellent

survey can be found in [33].

Variational methods are fundamental mathematical tools, and have been widely applied to

various problems in areas of image processing and analysis, and computer vision. Refer to [34,

35] for details. Among them, the Mumford-Shah model has been extensively investigated for

the segmentation problem. As such there is a large body of related work, and we shall only

review the work that are relevant for our treatment, i.e., extending the Mumford-Shah model to

3D or surface cases. Dufour et al. [36] proposed a deformable 3D mesh model using the reduced

Mumford-Shah functional, which can segment and track objects with fuzzy boundaries. In [37],

Jin et al. extended the Mumford-Shah functional to functions defined on a deforming surface

for reconstructing 3D shape and appearance from multi-view images. By introducing two fourth

order regularization methods to the Mumford-Shah model, Droske et al. [38] applied them to

aerial image segmentation and feature-preserving surface denoising. To tackle the problem of

segmenting data defined on a manifold into regions of constant properties, Delaunoy et al. [39]

extended the convex image labeling model to manifolds, which is the piecewise constant case

of the Mumford-Shah model.

1.2. Contributions and outline

As described above, the concept of feature is very general and there are various definitions

of what constitutes a specific feature. However, existing definitions typically are based on local

differential properties or statistical quantities, such as ridges, valleys, contours and so on. In

this paper, we bring the spirit of variational approach to the problem of generic feature lines

detection on polygonal meshes. The key idea is to characterize feature on polygonal meshes

as where the measure function changes sharply or more formally has discontinuities. Here, the

measure function is a function defined on the polygon mesh, which captures a concrete property

being observed, e.g. mean curvature, intensity. The motivation of this work is that human

visual system is sensitive to discontinuities and often recognizes them as features. For example,

the human eye exaggerates the intensity change at any edge where there is a discontinuity in

magnitude or slope of intensity. This leads to Mach band effect (refer to [40]). Our approach

provides another way to detect feature lines and offers the following technical features:

• A unified variational framework for feature lines detection is developed. Various feature
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lines can be detected only by changing the measure function. In support of this goal, the

Mumford-Shah model and its Γ-convergence approximation, and valleys of functions are

extended to surfaces.

• Flexible and intuitive control over the detecting procedure is available. In our system,

several parameters, such as α, β, γ, T (C), can be used to tune up feature lines detection.

Interactive ways to select the region of interest (ROI) and terminate the iterative process

are also provided.

• Our approach is computationally effective, robust and easy to implement. Neither surface

fitting to meshes nor estimation of high-order derivatives is required. Using Γ-convergence

technique, our variational model is finally discretized to sequential coupled sparse linear

systems .

The remainder of this paper is organized as follows. Section 2 gives some preliminaries and

an overview of algorithm framework. In Section 3, we generalize the Mumford-Shah model

to manifold surfaces, and present numerical algorithms for our variational model in detail.

In Section 4, we propose a method for extracting feature lines from meshes according to the

canyon function z. Section 5 discusses the choice of measure functions and parameters, and

shows experimental results and performance of our algorithms. Section 6 concludes the paper

with proposals for future work.

2. Preliminaries and Overview

In this section, we give some preliminaries and an overview of our variational method.

2.1. Polygonal meshes

In computer graphics and geometric modeling, a polygonal mesh is a collection of vertices,

edges and faces that defines the shape of a polyhedral object. The faces usually consist of

triangles, quadrilaterals or other simple polygons. For the sake of simplicity and popularity,

this paper will restrict faces to triangles. A triangle mesh M can be represented by a graph

structure (simplicial complex) with a set of vertices

V = {v1, v2, . . . , v|V|}

and a set of triangular faces connecting them

F = {f1, f2, . . . , f|F|}, fi ∈ V × V × V,

where | · | denotes the cardinality of a set, and X ×Y is the Cartesian product of two sets. An

alternative way is to represent the connectivity by the edges of the respective graph

E = {e1, e2, . . . , e|E|}, ei ∈ V × V,

which sometimes is more efficient. The geometric embedding of a triangle mesh into R3 is

specified by associating a position vi to each vertex vi:

P = {v1,v2, . . . ,v|V|}, vi =

x(vi)

y(vi)

z(vi)

 ∈ R3.
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In addition to geometric and topological components, a triangle mesh M may have some

constraints on the relations among its different elements, i.e., vertices, edges and faces, which

impose a valid representation. In a two-dimensional manifold mesh, the neighborhood of every

point laid on the mesh is homeomorphic to a disk (or a half-disk at boundaries). For a closed

mesh, it will not contain any boundary edges. Rigorous treatments on these topics can be found

in [41-43]. In this paper, we only consider orientable two-dimensional manifold M embedded

in R3 of arbitrary topological type with no degenerate triangles.

2.2. The Mumford-Shah image model

In image processing and analysis, image segmentation is the process of partitioning the

domain Ω of an image I into constituent parts Ωi built upon which other high-level tasks

such as object detection, recognition, and tracking can be further performed. During last

decades, several important and interconnected models pertinent to image segmentation have

been developed, such as active contours [44], intensity-edge mixture model [45] and Mumford-

Shah’s free boundary model [46]. Assume the image domain Ω is a bounded Lipschitz domain

in R2 (whose boundary is sufficiently regular in the sense that it can be thought of as locally

being the graph of a Lipschitz continuous function), and u0 ∈ L∞(Ω) or L2(Ω) is the initial

image. A Lipschitz partition of Ω refers to a finite set partition

Ω = Ω1 ∪ Ω2 · · · ∪ ΩN ∪ Γ,

where Ωi is a connected open Lipschitz domain, and Γ is a relatively closed subset of Ω with finite

1-D Hausdorff measure. The Mumford-Shah energy functional can be formulated as follows:

Ems[u,Γ | u0] = αH1(Γ) +
β

2

∫
Ω\Γ
|∇u|2dx1 ∧ dx2 +

γ

2

∫
Ω

(u− u0)
2dx1 ∧ dx2,

where H1(Γ) =

∫
Γ

ds (when Γ is regular) stands for the total length of the arcs making up

Γ, dx1 ∧ dx2 is the exterior product of two 1-forms and α, β and γ are nonnegative constant

weights. In the functional Ems[u,Γ | u0], function u is differentiable on
∪N

i=1 Ωi and is allowed

to be discontinuous across Γ. As described in the seminal paper of Mumford and Shah [46], the

first term asks that the discontinuity set Γ be as short as possible, and the second term imposes

the condition that u be smooth in Ω\Γ, and the third term measures the fidelity to u0.

For a given image u0, our aim is to search a function u and a subset Γ of Ω which minimize

the Mumford-Shah energy functional, i.e., trying to approximate the input image u0 with a set

of smoothly varying regions Ω that have short boundaries Γ. A variational algorithm optimizes

the way in which neighboring pixels can be merged into homogeneous regions separated by

qualitative discontinuities. It transforms the image segmentation problem into a particular

case of what is called in physics free boundary problems. With proper regularity hypotheses,

the existence and some basic properties of a solution for the Mumford-Shah image model have

been studied by Mumford and Shah [46] and others. However, it is hard to solve it in an effective

way. The main difficulty is that the Mumford-Shah image model involves two unknowns u and

Γ of different natures. The lack of differentiability of the Mumford-Shah functional with a

suitable norm does not allow us to use Euler-Lagrange equations. Until now, there are two

prevalent methods for solving the Mumford-Shah’s image model approximately. One is based

on Γ-convergence approximation, the other uses level-set technique. More in-depth information

can be found in Section 3.2 or [34, 35] and references therein.
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2.3. Framework

A brief sketch of our generic framework is illustrated in Fig. 2.1. Begin with a given

polygonal mesh, our aim is to detect feature lines according to measure function u0 whose

values are computed from mesh or loaded from data. A nonlinear smoothing procedure is

executed to obtain function u. By comparing the difference between function u0 and u, we

gain function z which is strongly related to edge set Γ. With the help of visualizing function

z in an interactively graphic environment, the end-user makes decision on whether to perform

smoothing and detecting iterations again or not, and select the ROI. Then on each vertex of

mesh within the ROI, a quadric surface is fitting to function z under certain a local coordinate

system. We check some minimal conditions and locate all valley points which are then connected

based on topological relations. Finally, the resulting feature lines are filtered so as to achieve

pleasing shape. If the end-user does not satisfy the result, they can repeat the previous process

together with tuning some parameters till the desired result is achieved. The following sections

describe the details of each step in Fig. 2.1.

(a) (b) (c)

Feature measure
function

Input: polygonal mesh
compute or load

from data
Approximated

function
smooth

Canyon function

detect

Local quadratic
forms

fit Output: feature linesValley pointsextract
connect

and filter

if not
satisfied

0
u u

z

if not
satisfied

(d) (e) (f)

Fig. 2.1. The generic framework of our method: (a) polygonal mesh; (b) measure function u0 (mean

curvature); (c) function u; (d) canyon function z; (e) principal axes of quadric surfaces; (f) feature

lines.
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3. Variational Model for Feature Lines Detection

In order to detect feature on polygonal meshes, we extend the Mumford-Shah image model

to surfaces. In the original model, the domain Ω of image I usually is a planar region in R2,

especially a rectangle. As a result, Euclidean metric and geometry are employed. Whereas,

we study functions defined on two-dimensional manifold embedded in R3, i.e., surface. Con-

sequently, Riemannian metric and geometry have to be used. It distinguishes our variational

model from the Mumford-Shah image model.

3.1. The Mumford-Shah model on surfaces

Assume S is a given surface in R3, and x(x1, x2) : U ⊂ R2 → S is a local coordinate system

around x ∈ S. In the language of Riemannian geometry [47, 48], we denote the Riemannian

metric by

gij = ⟨xi, xj⟩, i, j = 1, 2,

where dx(x1, x2) = x1dx1 + x2dx2. Let u0(x) be a measure function defined on S, which

represents geometric, topological or functional information. The choice of u0(x) heavily depends

on the really application, and is crucial to our variational method. In this paper, mean curvature

and other measures may be utilized. More details will be discussed in Section 5. Then we

formulate the Mumford-Shah energy functional on surface S as follows:

Ems[u,Γ | u0] = αH1(Γ) +
β

2

∫
S\Γ
|∇su|2dA+

γ

2

∫
S
(u− u0)

2dA, (3.1)

where dA =
√
det(gij) dx1 ∧ dx2 is the element of surface area, and ∇s denotes the intrinsic

gradient operator on S (see Section 3.3.2 for details). Likewise, we need to search for a function

u and a subset Γ of S minimizing the energy functional. The desired feature lines locate in the

discontinuity set Γ.

3.2. Γ-convergence method

As described in Section 2.2, there are two prevalent methods for solving the Mumford-Shah

image model. The main idea of the level-set method is to represent the one-dimensional edge

set Γ as the zero level set of a C1 continuous (or more general Lipschitz continuous) function

ϕ(x) : Ω→ R, that is
Γ = ϕ−1(0) = {x ∈ Ω | ϕ(x) = 0}.

In combination with the level-set formulation, we can reformulate the Mumford-Shah model as

follows:

Ems[u
+, u−, ϕ | u0] = α

∫
Ω

|δ(ϕ)∇(ϕ)|dx1 ∧ dx2 +
1

2

∫
Ω

[
β|∇u+|2 + γ(u+ − u0)

2]H(ϕ)dx1 ∧ dx2

+
1

2

∫
Ω

[
β|∇u−|2 + γ(u− − u0)

2]H(−ϕ)dx1 ∧ dx2,

where Ω± = {x ∈ Ω | ± ϕ(x) > 0}, u± = u|Ω± , and δ(ϕ) and H(x) denote the Dirac delta

function and the Heaviside step function respectively. If u restricts to being a piecewise-constant

approximation of u0, then the Mumford-Shah model reduces to the Chan and Vese’s model [49].

The later can be considered as a particular case of the minimal partition problem. But, the

previous models can only divide Ω into two distinct regions. Vese and Chan [50] generalized their
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2-phase model to a multiphase level-set framework that can identify up to 2k regions. For an

arbitrary number of partitions, Lie et al. [51] introduced a piecewise-constant level set function

method (PCLSM) which uses each constant value to represent a unique region. Recently, fast

solvers for multiphase partitioning problems, such as [52-54], were developed. However, by the

implicit function theorem, the zero level set of ϕ(x) is locally homeomorphic to the real line in

R2. Therefore, ϕ−1(0) does not contain any crack-tips and junctions.

Since feature lines on polygonal mesh commonly contain some junctions and crack-tips, we

prefer to use the Γ-convergence method. In this method, the one-dimensional edge set Γ is

encoded by a smooth canyon function z : S → [0, 1], which ideally should behave like

z(x) ≈

{
0 if x ∈ Γ,

1 otherwise.

The canyon function z is an approximation of the function (1−χΓ) (χΓ is the indicator function

of edge set Γ), and is treated as an unknown variable in our variational framework. The

remarkable observation described in [55] shows that the one-dimensional Hausdorff measure of

Γ can be well approximated by

αH1(Γ) ≃ α

2

∫
S

[
ε|∇z|2 + ε−1(1− z)2

]
dA,

where the parameter ε is used to tune the transition bandwidth of z in the vicinity of Γ. Since

z almost vanishes along Γ, the Sobolev term in the Mumford-Shah model allows a natural

approximation:
β

2

∫
S\Γ
|∇u|2dA ≃ β

2

∫
S
z2|∇u|2dA.

Thus, the Γ-convergence approximation of the Mumford-Shah model (3.1) can be written as

follows:

Ems[u, z | u0, ε] =
α

2

∫
S

[
ε|∇z|2 + ε−1(1− z)2

]
dA

+
β

2

∫
S
z2|∇u|2dA+

γ

2

∫
S
(u− u0)

2dA.
(3.2)

Ambrosio and Tortorelli [55] proved that

lim
ε→0+

Ems[u, z | u0, ε] = Ems[u,Γ | u0]

in a sense of the Γ-convergence.

The first variation of (3.2) yields the Euler-Lagrange system of elliptic equations as follows:{
βdivs(z

2∇su)− γ(u− u0) = 0, (3.3a)

α[ε∆sz + ε−1(1− z)]− β|∇su|2z = 0, (3.3b)

with Neumann boundary conditions, i.e., ∂u
∂n

∣∣
∂S = 0 and ∂z

∂n

∣∣
∂S = 0. The definitions of divs,

∇s and ∆s are given in Section 3.3.2. The system (3.3) can be numerically solved by the

alternating minimization scheme, which amounts to z(n) → u(n) → z(n+1):{
u(n) = argmin Ems[u | z = z(n), u0, ε],

z(n+1) = argmin Ems[z | u = u(n), u0, ε].
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The last scheme corresponds to the following nonlinear system of diffusion equations:
∂u

∂t
= βdivs(z

2∇su)− γ(u− u0), (3.4a)

∂z

∂t
= α[ε∆sz + ε−1(1− z)]− β|∇su|2z, (3.4b)

with the same Neumann boundary conditions with (3.3). The usage of (3.4a) is to smooth

out function u0 and obtain function u, while (3.4b) is to detect edge set Γ by comparing the

difference between function u0 and u. The new model (3.4) searches for an equilibrium between

two competing processes rather than a global minimum of the non-convex functional (3.2). For

further information, refer to [56-59, 34].

3.3. Numerical solutions

We now present some details of our algorithms and implementation.

3.3.1. Piecewise-linear functions

Assume we are given a triangle meshM = (V, E ,F) which is a piecewise-linear approximation

of surface S in R3. Let u0 ∈ L∞(S) or L2(S) be a scalar function. At each vertex vi ofM, the

value of u0 is ui, i.e.,

u0(vi) = ui ∈ R, i = 1, . . . ,m, and m = |V|.

Using the piecewise-linear basis functions {φi} defined on the meshM, we express u0 as follows:

u0(v) =
m∑
i=1

φi(v)ui, v ∈ S,

where φi(v) takes the value 1 at vertex vi and the value 0 at other vertices. Especially, if v

locates in a triangle f = [vi,vj ,vk], then u0(v) can be evaluated by

u0(v) = rui + suj + tuk,

where (r, s, t) is the barycentric coordinate of v with respect to the triangle f . Also, function

u and z are represented in a similar way.

3.3.2. Discrete ∇s and ∆s operators

The gradient of a differentiable function f : S → R is a map ∇sf : S → R3, which assigns a

vector ∇sf(v) ∈ Tv(S) to each v ∈ S such that

⟨∇sf(v),u⟩ = dfv(u), ∀ u ∈ Tv(S),

where Tv(S) denotes the tangent plane to S at v, and dfv(u) is the directional derivative of f

with respect to u. If the scalar function f is represented by

f(v) =

m∑
i=0

φi(v)fi,
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αij

βij

AM(vi)

vj

vi

(a)

ejk

eij eki

∇sϕil
∇sϕkl

∇sϕjl
Tl

θi

θj θk

vi

vj vk

(b)

Fig. 3.1. Discrete operators: (a) the gradient operator ∇s; (b) the Laplace-Beltrami operator ∆s.

then we have

∇sf(v) =
m∑
i=0

fi∇sφi(v).

Thus the ∇sf(v) is given by

∇sf(v) =



∑
j∈Tl

fj∇sφjl, if v ∈ T ◦
l ,∑

Tl∈NT (i)

∑
j∈Tl

fj∇sφjl|Tl|
A(vi)

, then if v = vi,

0, else,

(3.5)

where NT (i) is the set of all triangles immediately adjacent to the node i, |Tl| and T ◦
l are the

area and interior of triangle Tl, and A(vi) =
∑

Tl∈NT (i) |Tl|. The ∇sφjl equals to the vector

orthogonal to the edge eki opposite to vj in the triangle Tl, pointing towards vj and with a

magnitude of |eki|/2|Tl| (see Fig. 3.1).

The divergence of a differentiable vector field w on the surface S is defined by

divsw , tr(u 7→ ∇uw),

where ∇ is a Levi-Civita connection and tr denotes the trace of a linear mapping [47]. The

Laplace-Beltrami operator ∆s can be written as

∆sf(v) , divs[∇sf(v)].

Several discrete schemes have been developed for approximating operator ∆s in polygonal mesh

setting. For a comprehensive survey, please refer to [60]. In this paper, we use the following

scheme:

∆sf(vi) =
1

AM (vi)

∑
j∈NV (i)

cotαij + cotβij

2
[f(vj)− f(vi)], (3.6)

where NV (i) is the set of 1-ring vertex neighborhood of vi, αij and βij are the two angles

opposite to the sharing edge eij in the two triangles, and AM (vi) is the area sum of vi’s

neighboring region as depicted in Fig. 3.1(b). The divs operator can also be discretized in a

similar way, which is described in Appendix.

From the definition of mean curvature vector, we have

(−2κHn)(v) = ∆s(v).
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By (3.6), we obtain

(−2κHn)(vi) =
1

AM (vi)

∑
j∈NV (i)

cotαij + cotβij

2
(vj − vi).

Subsequently, the mean curvature can be computed by:

κH(vi) =
1

AM (vi)

∑
j∈NV (i)

cotαij + cotβij

4
(vi − vj) · ni, (3.7)

where ni is the unit normal of vertex vi on the surface S.

3.3.3. Algorithms

We discretize the nonlinear system of elliptic equations (3.4) via semi-implicit FDM: semi-

implicit time integral and spatial discretization by finite difference method. This technique is

unconditionally stable and leads to systems of linear equations (see [61, 62] for details).

As a matter of convenience, we denote un
i = u(vi)

∣∣
t=tn

and zni = z(vi)
∣∣
t=tn

. In terms of

the definitions of divs and ∇s, we have

divs(z
2∇su) = z2∆su+ 2z⟨∇sz,∇su⟩.

With a semi-implicit time integral (from tn to tn+1), (3.4a) can be discretized as:

un+1
i − un

i

∆t
= β

[
(zni )

2

AM (vi)

∑
j∈NV (i)

cotαij + cotβij

2
(un+1

j − un+1
i )

+
2zni

A2(vi)

⟨ ∑
Tl∈NT (i)

( ∑
j∈Tl

znj ∇sφjl

)
|Tl|,

∑
Tm∈NT (i)

( ∑
k∈Tm

un+1
k ∇sφkm

)
|Tm|

⟩]
− γ(un+1

i − ci), i = 1, 2, . . . ,m.

(3.8)

Similarly, the discrete version of (3.4b) is given by:

zn+1
i − zni

∆t
= α

[
ε

AM (vi)

∑
j∈NV (i)

cotαij + cotβij

2
(zn+1

j − zn+1
i ) +

(1− zn+1
i )

ε

]

− β

∣∣∣∣∣ 1

A(vi)

∑
Tl∈NT (i)

( ∑
j∈Tl

un+1
j ∇sφjl

)
|Tl|

∣∣∣∣∣
2

zn+1
i , i = 1, 2, . . . ,m.

(3.9)

By rearranging coefficients of variables {un+1
i }Ni=1 in (3.8) and moving constant terms into

right-hand side, we can rewrite it in matrix form as:
a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...

am1 am2 · · · amm



un+1
1

un+1
2
...

un+1
m

 =


b1
b2
...

bm

 , (3.10)
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where aij is given by

aij =



1 + β∆t

[
(zni )

2

AM (vi)

∑
j∈NV (i)

(cotαij + cotβij)

2
− 2zni

A2(vi)⟨ ∑
Tl∈NT (i)

( ∑
j∈Tl

znj ∇sφjl

)
|Tl|,

∑
Tm∈NT (i)

∇sφim|Tm|

⟩]
+ γ∆t, if j = i,

−β∆t

[
(zni )

2(cotαij + cotβij)

2AM (vi)
+

2zni
A2(vi)

⟨ ∑
Tl∈NT (i)( ∑

j∈Tl

znj ∇sφjl

)
|Tl|,

∑
Tm∈NT (i)

∩
NT (j)

∇sφjm|Tm|

⟩]
, then if j ∈ NV (i),

0, else,

and bi = un
i + γci∆t, i = 1, 2, . . . ,m.

Also (3.9) is rewritten as follows:
d11 d12 · · · d1m
d21 d22 · · · d2m
...

...
. . .

...

dm1 dm2 · · · dmm



zn+1
1

zn+1
2
...

zn+1
m

 =


g1
g2
...

gm

 , (3.11)

where dij is given by

dij =



1 + α∆t

[
ε

AM (vi)

∑
j∈NV (i)

cotαij + cotβij

2
+

1

ε

]

+β∆t

∣∣∣∣∣ 1

A(vi)

∑
Tl∈NT (i)

( ∑
j∈Tl

un+1
j ∇sφjl

)
|Tl|

∣∣∣∣∣
2

, if j = i,

−εα∆t
cotαij + cotβij

2AM (vi)
, then if j ∈ NV (i),

0, else,

and gi = zni + ε−1α∆t, i = 1, 2, . . . ,m.

Due to the unconditional stability of semi-implicit FDM, we can choose the time step ∆t > 0

arbitrarily. In theory, large ∆t makes the approximate solution be more close to the exact solu-

tion of (3.3) than the small one at the equivalent computational cost. But, large ∆t introduces

big numerical error and leads to smooth out functions u and z overly, which cause some feature

lines to be missed. Thus, we should choose ∆t to balance the efficiency and the accuracy. It’s

hard to give an optimal value of ∆t. In our experiment, we choose ∆t = 0.001 in all of our

examples which is proved to work well.

Our iterative algorithm starts by setting canyon function z = 1 everywhere, which corre-

sponds to the absence of discontinuity set Γ, and u(v)
∣∣
t=t0

= u0(v). Then just as Gauss-Seidel

method, we alternating solve un+1 from (3.10) with known un and zn, and zn+1 from (3.11) with

known un+1 and zn respectively. Both these systems are sparse, and can effectively be stored

and solved by using numerical linear algebra packages, such as LASPACK [63] or TAUCS [64].

Until the resulting canyon function z is satisfied, we terminate this iteration process.
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4. Extraction of Feature Lines

Now, we have canyon function z at hand, which represents feature lines implicitly and

is enough for some applications, such as non-photorealistic rendering. However, it is fairly

common to use feature lines explicitly. According to the definition of canyon function z, feature

lines are loci of points where function z takes the value of zero exactly. While function z

ranges from 0.0 to 1.0 and takes the form of piecewise-linear representation, we can not locate

feature lines directly by finding the zero crossings of function z. More, the set of those locations

at which the value of function z approaches zero (i.e., smaller than a threshold ϵ) forms a

region, that is ROI. Therefore, it is natural to identify feature lines as the medial axis (or the

skeleton) of ROI. In this paper, we compute the medial axis of ROI by tracing the valley lines of

function z.

4.1. Valleys of functions

In image processing and computer vision, the valleys of a smooth function of two variables

is a set of curves whose points are, loosely speaking, local minima in at least one dimension.

Let g(x̄) : R2 → R be a C2 function, and denote the Jacobi matrix and the Hessian matrix of

function g at x̄ as Dg(x̄) and D2g(x̄) respectively. Assume u1 and u2 are the eigenvectors of

D2g and form a unit orthonormal set, i.e., D2g u1 = λ1u1 and D2g u2 = λ2u2 with λ1 > λ2. A

local minimum point x̄ occurs when [u1,u2]
TDg(x̄) = 0 and λ1 > λ2 > 0. Rather than testing

for a local minimum in all 2 directions {u1,u2}, it is possible to restrict attention to only 1

direction u1. A point x̄ is called a 1-dimensional valley point or ravine point [15,20] of function

g if uT
1 Dg(x̄) = 0 and λ1 > 0. Note that uT

1 Dg(x̄) = 0 is an equation in two unknowns which,

by the implicit function theorem, typically has solutions of 1-dimensional manifolds. Thus, the

set of valleys points makes up valley lines.

The above definition can be generalized to function z(x) defined on the surface S, that

is valleys in the Riemannian geometry. Let x : R2 → S ⊂ R3 be a parameterization of the

surface S, and denotes as x(x̄). We redefine function z(x) as z ◦ x(x̄) that is a mapping from

R2 to R. Then, the previous definition of valley point can be applied to z(x). Since canyon

function z(x) is an indicator of the discontinuity set Γ and behaves like distance function in the

neighborhood of Γ, valley lines of z(x) form the medical axis of ROI. For rigorous analysis of

the close relationships between the medical axis, distance function singularity, and valley lines,

refer to [65-67, 15].

4.2. Quadratic polynomials fitting

To obtain the expression of z◦x(x̄), we usually need a parameterization x(x̄) of the polygonal

meshM. But, mesh parameterization is not a trivial task, especially for arbitrary topological

type [41]. In this paper, we directly approximate z ◦ x(x̄) by locally fitting with a bivariate

quadratic polynomial. Our method is similar to [68–71], in which Lai, Liang, Zhao, and Wang et

al. presented methods to extract local intrinsic coordinate system and approximate differential

operators on the manifold discretely without parametrization or connection information. Let vi

be a vertex of the meshM, and NV (i) is the set of 1-ring neighborhood vertices of vi. For each

vj ∈ NV (i), project it onto the tangent plane P defined by the unit normal vector ni of vi.

Here, we introduce a local orthonormal coordinate system {o; e1, e2, e3} with its origin o at vi

and the axe e3 = ni as shown in Fig. 4.1(a). The axes e1 and e2 can be chosen arbitrarily only
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if they satisfy the requirement of unit orthonormal basis. Under the local coordinate system,

the projection ṽj of vj onto P is computed by

ξj = (vj − vi) · e1, ηj = (vj − vi) · e2.

Our desired quadratic polynomial has the following form

z(ξ, η) = a11ξ
2 + 2a12ξη + a22η

2 + a1ξ + a2η. (4.1)

The unknown coefficients are determined by least-squares fitting [72,73]

min
∑

j∈NV (i)

∥∥z(ξ, η)− z̄j
∥∥2,

where zj = z(vj) and z̄j = zj − zi.

e1

n

e2

P

o

vj

ṽj

(a)

e1

n

e2

ẽ1

ẽ2

P

o

(b)

Fig. 4.1. The definition of valley points: (a) local frame; (b) quadratic polynomials fitting.

Then we rewrite the quadratic polynomial (4.1) in matrix form as

z(ξ, η) =
(
ξ η

)(a11 a12
a12 a22

)(
ξ

η

)
+
(
ξ η

)(a1
a2

)
.

Since the matrix A = (aij)2×2 is real-symmetric, it has real eigenvalues and eigenvectors. More,

A is diagonalizable. Let λ1 and λ2 be eigenvalues of A with associated eigenvectors u1 and u2

respectively, where λ1 > λ2 and {u1,u2} forms a unit orthonormal set. Assume {o; ẽ1, ẽ2, ẽ3} is
a new local orthonormal coordinate system with its origin o at vi and the axes ẽ1 = (e1, e2)u1,

ẽ2 = (e1, e2)u2 and ẽ3 = ni as shown in Fig. 4.1(b). Now, the quadratic polynomial can be

reformulated as

z(x̄, ȳ) =
(
x̄ ȳ

)(λ1

λ2

)(
x̄

ȳ

)
+

(
x̄ ȳ

)(µ1

µ2

)
,

where

(
µ1

µ2

)
=

(
u1 u2

)−1
(
a1
a2

)
.

Because of

z(x̄, ȳ) = λ1

(
x̄+

µ1

2λ1

)2

+ λ2

(
ȳ +

µ2

2λ2

)2

− µ2
1

4λ1
− µ2

2

4λ2
, (4.2)

we should divide µ1 by λ1 so as to eliminate the negative impact of local parameterization:

µ1 ←
µ1

2λ1
.
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In fact, µ1 is the partial derivative of z(x̄, ȳ) with respect to x̄ at o that is close related to local

parameterization; while, −µ1

2λ1
indicates the position of x̄ that z(x̄, ȳ) attains its maximum or

minimum for fixed ȳ. In addition, ẽi1 and ẽj1 of two adjacent vertices vi and vj may not be

determined coherently, we need to flip uj
1 if the angle between them is obtuse:

ẽj1 ← −ẽ
j
1, µj

1 ← −µ
j
1.

4.3. Feature lines tracing

Due to the piecewise-linear representation of mesh M and function z, a tracing method

proposed in [20] is adapted to find out valley lines. For each mesh edge [vi,vj ], we check

whether it contains a valley point or not. Since we have

Dz(vi) =

(
µ1

µ2

)
, D2z(vi) =

(
λ1

λ2

)
,

1-dimensional valley points can be characterized by

µ1 = 0, λ1 > 0.

In order to verify whether µ1 has a zero-crossing on the edge [vi,vj ], we check the following

condition:

µi
1 µ

j
1 6 0. (4.3)

It follows from (4.2) that function z(x̄, ȳ) attains a minimum (restricting to x̄-direction) at

vi −
µ1

2λ1
ẽ1,

if λ1 > 0. So, we apply the following tests:

µi
1

[
(vj − vi) · ẽi1

]
6 0, µj

1

[
(vi − vj) · ẽj1

]
6 0, (4.4)

to determine whether the edge [vi,vj ] contains a point satisfying the minimal condition. If

both (4.3) and (4.4) are satisfied, we use linear interpolation

v =
|µj

1|vi + |µi
1|vj

|µj
1|+ |µi

1|
or nearest-neighbor interpolation

v =

{
vi, |µi

1| < |µ
j
1|

vj , |µi
1| > |µj

1|

to compute a valley point v on the edge [vi,vj ].

Once all valleys points are determined, we are ready to construct valley lines. If two valley

points are detected on edges of a triangle in the polygonal mesh, they are connected by a straight

segment. If all three edges of a triangle contain valley points, valley points from neighboring

triangles are connected with the centroid of this triangle.

As described in [20, 25], valley lines detected on complex shapes with many small wrinkles

usually have poor connectivity. To reduce the small fragmentation of feature lines, we use a

similar measurement of saliency

T (C) =

∫ L

0

1

1 + z
ds ≈

∑
i

1

1 + z(vi)+z(vi+1)
2

∥ vi+1 − vi ∥

as a threshold for a filtering procedure.
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4.4. ROI selection

Feature lines are located in the ROI, where the values of function z are smaller than a

threshold ϵ. Under a graphic environment, the end-user may interactively select the ROI by

setting ϵ. Then we only perform quadratic polynomials fitting and feature lines tracing on

the mesh vertices pertaining to the ROI. This simple strategy saves lots of computation, and

provides an intuitive way to control the procedure of feature lines detection.

5. Results and Discussion

In this section, we discuss the choice of measure functions and parameters, and present

results of experiments with the algorithms described in the preceding sections.

5.1. Measure functions

In our framework, there is no special limit of the choice of measure function u0. The value

of u0 can be computed from polygonal meshes or loaded from data. It highly depends on the

specific application at hand.

As described in [74], normal curvature is the length magnification of a small arc under

Gaussian map. It is very like the dihedral angle at a polyhedral edge. If we average the

magnification over all possible directions, mean curvature is obtained, just as the Euler’s formula

stated. Since creases are curves on a surface along which the surface normal varies sharply, mean

curvature can be used to detect them. Although Gaussian curvature can also be employed, we

observed that the results of using mean curvature normally are better as shown in Fig. 5.1. In

this paper, we choose mean curvature to serve as the measurement of feature lines by default

if no additional declaration is made.

(a) (b) (c) (d) (e)

Fig. 5.1. Comparison between using mean curvature (b)-(c) and Gaussian curvature (d)-(e).

A silhouette is the image of an object or scene consisting of the outline and a featureless

interior, and is view-dependent feature. Consider a view of a smooth and closed surface S from

a perspective camera centered at c. Mathematically, the contour generator is defined as the set

of points

{p ∈ S | n(p) · v(p) = 0},
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where n(p) is the unit surface normal at p, and v(p) = c − p. From a common viewpoint,

the contour generator is a set of disconnected loops on the surface S. The contour consists of

the visible portions of these curves, projected onto the image plane. A simple technique for

rendering contours is to shade each vertex vi using the intensity

ci =

{
1.0, if

∣∣n(vi) · v(vi)
∣∣ < δ,

0.0, otherwise,
(5.1)

where δ = cos( 3π8 ). Fig. 5.2(b) gives an example. When we set the intensity function ci as the

measure function u0, the contour can be detected by our variational method as demonstrated

in Fig. 5.2(d). If the preceding intensity function ci is replaced with

ci = n(vi) · v(vi), (5.2)

we will obtain feature lines which look like suggestive contours [31]. For an illustration, see

Fig. 5.2(e) and 5.2(h).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.2. Comparison between our variational approach and state-of-the-art suggestive contours method

[75] (RTSC-1.5): (a) dinosaur dataset; (b) intensity function (5.1); (c) contours of RTSC-1.5; (d)

contours of ours; (e) intensity function (5.2); (f) contours + suggestive contours of RTSC-1.5; (g)

contours + suggestive contours + suggestive highlights of RTSC-1.5; (h) suggestive-like contours of

ours.

Generic functions defined on the surface S can also be utilized, such as lightness function,

texture function and so on. Fig. 5.3(a) shows a polygonal mesh acquired by color 3D scan-

ner. On each vertex, we have the RGB values from which lightness functions are obtained as
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illustrated in the framed image of Fig. 5.3(a). Feature lines and canyon function are shown in

5.3(b).

(a) (b)

Fig. 5.3. Feature lines detection based on generic functions:

(a) polygonal mesh and lightness function; (b) feature lines and canyon function.

5.2. Performance

In order to provide a roughly estimate of performance, we have tested the presented method

with our minimally optimized code on various polygonal meshes ranging from synthetic to

measured models. Table 5.1 shows the mesh statistics, parameters, and detailed timings of our

experiments measured on a 2.6 GHZ Intel Dual-Core CPU with 2 GB of main memory.

Table 5.1: Performance results on a variety of models. PM denotes the peak memory usage, NI is the

number of iterations, and AT is the average time for each iteration. All running times are measured

in seconds.

Model |V | |F | α β γ ε ϵ T (C) PM NI AT

Fig. 5.5(c) 48,318 96,632 0.2 0.18 0.5 0.5 0.15 15 81,600K 20 1.18

Fig. 5.5(f) 62,088 124,244 0.2 0.10 0.5 0.5 0.15 10 90,080K 4 2.32

Fig. 5.3(b) 75,781 151,558 0.2 0.20 0.5 0.5 0.42 25 104,696K 6 2.42

Fig. 5.1(c) 87,494 174,996 0.2 12.0 0.5 0.5 0.55 15 114,648K 4 5.27

Fig. 5.2(d) 126,614 253,224 0.2 0.30 0.5 0.5 0.05 15 157,348K 1 6.56

Fig. 5.6(c) 187,644 375,284 0.2 1.00 0.5 0.5 0.15 15 231,680K 5 7.58

Fig. 5.7(b) 437,372 874,740 0.2 2.00 0.5 0.5 0.45 15 516,088K 5 22.32

Fig. 5.7(d) 724,569 1,449,162 0.2 3.00 0.5 0.5 0.25 15 837,916K 5 68.17

From these timings, we can see that the average time for each iteration and the peak memory

usage are nearly linear functions of the number of vertices with constant coefficients as depicted

in Fig. 5.4. (Notice that the average time for each iteration in Table 5.1 depends on the spectral

properties of matrices in (3.10) and (3.11) and the residual norm, because we solve them using

iterative solvers.) So, our method can be served as a practical tool for feature lines detection

on complex polygonal meshes.
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Fig. 5.4. Graphs of performance data: (a) the average time for each iteration and (b) the peak memory

usage as functions of the number of vertices.

5.3. Discussion of examples

In order to demonstrate the viability of our variational approach, we provide a compari-

son with two state-of-the-art feature detection methods: suggestive contours method [31], [32]

(the latest version RTSC-1.5 is available at http://gfx.cs.princeton.edu/proj/sugcon/index.html

[75]), and crest lines method [23] (the source code Crest is available at http://www.riken.jp/brict/

Yoshizawa/Research/Crest.html [76]). For fairness, we run their implementations with default

parameters. Fig. 5.2 shows the results of RTSC-1.5 and our variational approach. The outputs

of ours are comparable in quality to RTSC-1.5’s. Fig. 5.5 indicates that the presented method

is well suited for sharp features detection. Since we directly evaluates mean curvature by (3.7)

instead of using surface fitting based methods (e.g. [23, 20]) and do not use curvature deriva-

tives, the sharp features detected by our method generally are more accurate, as shown in Fig.

5.5. To be honesty, our current variational approach is slower than RTSC-1.5 and Crest. But,

it can provide a unified framework for detecting generic feature lines, such as those in Fig. 5.3,

which is not capable for existing approaches.

In order to demonstrate the impact of parameter β on feature lines detection, we provide

an example on Isis model as shown in Fig. 5.6. From (3.4a), we know that β indicates the

scale level at which smoothing step is being carried out. From (3.4b), we see that β is also

the scale parameter for determining the edge set Γ. Thus, β can be used to tune the scale of

feature lines detection. To get fine features, we set β a small value; otherwise, a large value

should be used. Fig. 5.6 provides an example confirmed it. Other parameters, such as α, γ, ε

and so on, may affect the final result too. Although the problem of choosing parameters in an

automatically way is worthy of further exploration, most of them can be set as default values

for generic models as reported in Table 5.1.

Two complex 3D models of real objects were tested for the purposes of verifying the efficiency

and robustness of our algorithms. Fig. 5.7(a) shows the Pierrot model, which has 437,372

vertices and 874,740 triangles. Fig. 5.7(c) shows the dancing children model, which consists

of 724,569 vertices and 1,449,162 triangles. The genus of them are 0 and 7 respectively. The

detected feature lines are illustrated in Fig. 5.7(b) and Fig. 5.7(d). These examples give us

confidence in the ability of the presented method to detect feature lines on general polygonal

meshes.
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(a) (b) (c)

(d) (e) (f)

Fig. 5.5. Comparison between our variational approach and state-of-the-art crest lines method

[23](Crest): (a) fandisk dataset; (b) crest lines of Crest with T = 1.8 and k = 2, running times =

3.48s; (c) sharp feature lines of ours (d) fusee dataset. (e) crest lines of Crest with T = 1.2 and k = 2,

running times = 4.66s; (f) sharp feature lines of ours.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5.6. Comparison of using various scale parameter β: (b) and (f) β = 0.1; (c) and (g) β = 1.0; (d)

and (h) β = 18.0.
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(a) (b)

(c) (d)

Fig. 5.7. Feature lines detection on complex polygonal meshes: (a)-(b) Pierrot dataset of genus 0 with

437K vertices and 874K triangles; (c)-(d) dancing children dataset of genus 7 with 724K vertices and

1,449K triangles.

6. Conclusions and Future Work

In this paper, we have presented a unified variational framework for detecting generic feature

lines on polygonal meshes, along with a practical implementation. To attain this goal, we extend

the Mumford-Shah model and valleys of functions to surfaces. Using Γ-convergence method

and discrete differential geometry, we discretize the presented variational model to sequential

coupled sparse linear systems. Our approach offers several desirable properties: various types

of feature lines can be detected only by changing the measure function; flexible and intuitive

control over the detecting procedure is available; the presented algorithms are straightforward to

implement. The effectiveness, robustness and visual quality have been evidenced by numerical

examples.

In the future we plan to investigate 3D mesh segmentation using a similar variational frame-

work, which is an important and challenging problem. We will consider the invention of new

measure functions to detect other types of feature lines. Another interesting direction for future

research is to redesign our algorithms so that computations can be performed on the GPUs for
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accelerating. Farther reaching future work includes theoretic analysis on the Mumford-Shah

surface model. Although the correctness of the Γ-convergence approximation of the Mumford-

Shah model on surface S seems to be obvious and has been validated by our experiments, a

rigorous proof still be absent at present. It is worth to be investigated in the future.

Appendix

According to the divergence theorem, we have∫
Ω

divs(u) dA =

∫
∂Ω

⟨u,nc⟩ ds,

where nc is the outward unit normal vector field along ∂Ω, and s is the arc length parameter

of ∂Ω. If Ω equals to AM (vi), then we get

nc ds = −∇φil|Tl|,

where Tl is a triangle in the 1-ring neighborhood faces of vi. Thus the integral can be rewritten

as ∫
AM (vi)

divs(u) dA = −
∑

Tl∈NT (i)

u
∣∣∣
Tl

· ∇φil|Tl|.

Accordingly, the discrete divs operator can be defined as

divs(u)
∣∣∣
vi

=
−1

AM (vi)

∑
Tl∈NT (i)

u
∣∣∣
Tl

· ∇sφil|Tl|, (.1)

which is compatible with (3.6). In fact, we know

∇sf(v)
∣∣∣
Tl

= f(vi)∇sφil + f(vj)∇sφjl + f(vk)∇sφkl

and

∇sφil · ∇sφil =
cotθk + cotθj

2|Tl|
,

∇sφil · ∇sφkl = −
cotθj
2|Tl|

,

∇sφil · ∇sφkj = −
cotθk
2|Tl|

,

where θk and θj are the incident angles of vertices vk and vj respectively as shown in Fig.

3.1(a). If we let u be equal to ∇sf(vi) in (.1), we obtain (3.6) immediately.
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