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Abstract

This paper aims to investigate sufficient conditions for the recovery of sparse signals via

the orthogonal matching pursuit (OMP) algorithm. In the noiseless case, we present a novel

sufficient condition for the exact recovery of all k-sparse signals by the OMP algorithm,

and demonstrate that this condition is sharp. In the noisy case, a sufficient condition for

recovering the support of k-sparse signal is also presented. Generally, the computation for

the restricted isometry constant (RIC) in these sufficient conditions is typically difficult,

therefore we provide a new condition which is not only computable but also sufficient for

the exact recovery of all k-sparse signals.
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1. Introduction

Recovery of a sparse signal based on a small number of linear measurements is a fundamental

problem in compressed sensing [10]. We consider the following model:

y = Φβ + ϵ, (1.1)

where y ∈ Rm is an observation vector, Φ ∈ Rm×n is a known sensing matrix and ϵ ∈ Rm is

the measurement error vector. Suppose Φ = (ϕ1, ϕ2, . . . , ϕn) where ϕi denotes the ith column

of Φ. Throughout this paper we assume that the columns of Φ are normalized, i.e., ∥ϕi∥2 = 1

for i = 1, 2, . . . , n. The goal of compressed sensing is to reconstruct the unknown β ∈ Rn based

on y and Φ.

One of the most commonly used frameworks for the recovery of sparse signals is the Mutual

Coherence Property introduced by Donoho and Huo in [11]. For a vector β = (β(1), . . . , β(n)) ∈
Rn, the support of β is defined as supp(β) = {i : β(i) ̸= 0} and β is said to be k-sparse if

|supp(β)| ≤ k. The mutual coherence is defined by [11].

Definition 1.1. (Mutual Coherence [11]) The mutual coherence µ of a matrix Φ is defined as

µ := max
i ̸=j

|⟨ϕi, ϕj⟩|. (1.2)
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The validity of the OMP algorithm was investigated by Tropp [18] and Cai and Xu [4] in

the framework of Mutual Coherence. In the noiseless case, Tropp [18] showed that µ < 1
2k−1 is

a sufficient condition for the exact recovery of a k-sparse signal β, and Cai and Xu [4] showed

that this condition is in fact sharp. When the linear measurement is corrupted by noise, Cai

and Wang [2] considered two types of bounded noise. One is ℓ2 bounded noise, i.e., ∥ϵ∥2 ≤ η1,

for some constant η1 > 0. The other is ℓ∞ bounded noise, i.e., ∥ΦT ϵ∥∞ ≤ η2, for some constant

η2 > 0. In the ℓ2 bounded noise case, if the conditions

µ <
1

2k − 1
and |β(i)| > 2η1

1− (2k − 1)µ

(
i ∈ supp(β)

)
are satisfied, then the support of the k-sparse signal β can be recovered exactly via OMP. In

the ℓ∞ bounded noise case, a similar result was given.

In the framework of restricted isometry property (RIP), the validity of the OMP algorithm

was investigated by Mo et al. [14], Wu et al. [17] and Cheng et al. [8]. Their results were related

to the restricted isometry constant (RIC), that is defined by [7].

Definition 1.2. Let Φ ∈ Rm×n be a matrix, and let 1 ≤ k ≤ n be an integer. The restricted

isometry constant (RIC) of order k is defined as the smallest non-negative number δΦk such that

for all k-sparse vectors β ∈ Rn,

(1− δΦk )∥β∥22 ≤ ∥Φβ∥22 ≤ (1 + δΦk )∥β∥22.

In the noiseless case, Mo and Shen [14] showed that under the condition δΦk+1 < 1
1+

√
k
, OMP

can exactly recover the k-sparse signal. In the ℓ2 bounded noisy case, Wu et al. [17] showed that

the support of the k-sparse signal β can be recovered exactly via OMP under the conditions

δΦk+1 <
1

1 +
√
k

and |β(i)| >

(√
1 + δΦk+1 + 1

)
η1

1− (
√
k + 1)δΦk+1

(
i ∈ supp(β)

)
.

In the ℓ∞ bounded noise case, a similar result was given.

In this paper, some sufficient conditions based on the restricted orthogonality constant

(ROC) are given. The following definition can be seen, e.g., in [5, 15].

Definition 1.3. Let Φ ∈ Rm×n be a matrix, and let 1 ≤ k1, k2 ≤ n be two integers. The

restricted orthogonality constant (ROC) of order (k1, k2) is defined as the smallest non-negative

number θΦk1,k2
such that

|⟨Φβ1,Φβ2⟩| ≤ θΦk1,k2
∥β1∥2∥β2∥2,

for all k1-sparse vector β1 and k2-sparse vector β2 with disjoint supports. We set

θΦk1,0 = θΦ0,k2
= 0.

For a matrix Φ with normalized columns, the mutual coherence is a special case of the ROC,

i.e., µ = θΦ1,1. Roughly speaking, the RIC δΦk and ROC θΦk1,k2
measure how far subsets of

cardinality k of columns of Φ are to an orthonormal system. It is obvious that δΦk and θΦk1,k2

are increasing in each of their indices.

In this paper, we establish some more relaxed conditions for sparse signals recovery via

OMP. We show that the condition

δΦk +
√
kθΦ1,k < 1
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guarantees the exact recovery of all k-sparse signals via OMP in the noiseless case. Furthermore,

the upper bound 1 is sharp in the sense that for any ξ > 0, the condition δΦk +
√
kθΦ1,k < 1+ ξ is

not sufficient to guarantee such exact recovery by using any recovery method. This is verified

by constructing a specific counterexample. Note that θΦ1,k ≤ δΦk+1 and δΦk ≤ δΦk+1, it is obvious

that δΦk +
√
kθΦ1,k < 1 is weaker than δΦk+1 < 1

1+
√
k
, thus some related results ([14], Theorem

3.1 etc.) are improved. Because the computation of δΦk is typically difficult [1] but θΦ1,k can be

effectively computed, we give a computable condition

√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1,

which can guarantee the exact recovery of all k-sparse signals via OMP in the noiseless case.

Furthermore, the condition is proved to be sharp. In the ℓ2 bounded noisy case, when the

conditions

√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1 and |β(i)| > 2η1

1−
√
k − 1θΦ1,k−1 −

√
kθΦ1,k

(
i ∈ supp(β)

)
are satisfied, we show that the support of the k-sparse signal β can be recovered exactly via

OMP. In the ℓ∞ bounded noisy case, a similar result is given. Since
√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1

is weaker than µ < 1
2k−1 , some related results ([2], Theorem 1 etc.) are also improved.

The rest of the paper is organized as follows. In Section 2, we will introduce some notations

and preliminary lemmas. In Section 3, we will give some details on OMP. In Section 4, we focus

on sparse signals recovery via OMP.

2. Notations and Preliminaries

In this section, we introduce some basic notations and preliminary lemmas that will be used

throughout the paper.

For two sets Γ and Λ in {1, . . . , n}, let Γ \ Λ = {i|i ∈ Γ, i /∈ Λ} and Γc = {1, 2, . . . , n} \ Γ.
For any subset Λ ⊆ {1, 2, . . . , n}, denote by ΦΛ a submatrix of Φ consisting of the columns ϕi

with i ∈ Λ, βΛ is a sub-vector of β consisting of the components β(i) with i ∈ Λ and

PΛ = ΦΛ(Φ
T
ΛΦΛ)

−1ΦT
Λ

denotes the projection onto the linear space spanned by the elements of ΦΛ. For a matrix Φ,

∥Φ∥1,1 = max
x̸=0

∥Φx∥1
∥x∥1

is the induced norm, where ∥x∥1 =
∑n

i=1 |xi| for x = (x(1), . . . , x(n)). ei ∈ Rn is a vector

with 1 in the ith index and zeros elsewhere. We will call i a correct index if the corresponding

β(i) ̸= 0 and call i an incorrect index otherwise. S = {i : β(i) ̸= 0} denotes the support of a

vector β.

Using the above notations, we state and prove some key technical tools which will be used

in the proof of the main results.

Lemma 2.1. ([3]) For any ν ≥ 1 and positive integers k1, k2 such that νk2 is an integer, then

θΦk1,νk2
≤

√
νθΦk1,k2

. (2.1)
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Lemma 2.2. If µ < 1
2k−1 , then

√
k − 1θΦ1,k−1 +

√
kθΦ1,k < 1.

Proof. If k=1, then θΦ1,1 = µ < 1
2−1 = 1. Consequently,

√
k − 1θΦ1,k−1 +

√
kθΦ1,k = θΦ1,1 < 1.

For k > 1, it follows from Lemma 2.1 that θΦ1,k ≤
√
kθΦ1,1 =

√
kµ and θΦ1,k−1 ≤

√
k − 1µ.

Hence √
kθΦ1,k +

√
k − 1θΦ1,k−1 ≤ kµ+ (k − 1)µ = (2k − 1)µ < 1. �

The following proposition presents a method to compute θΦ1,k in polynomial time.

Proposition 2.1. Let Φ ∈ Rm×n has normalized columns. Then

θΦ1,k = max
1≤i≤n

max
Λ⊆{1,··· ,n}\{i}

|Λ|≤k

∥ΦT
Λϕi∥2. (2.2)

Proof. Without loss of generality, let α = ei and β be a k-sparse vector with unit ℓ2 norm,

and with disjoint supports. Let Λ = supp(β) and C = max
1≤i≤n

max
Λ⊆{1,··· ,n}\{i}

|Λ|≤k

∥ΦT
Λϕi∥2. Then

|⟨Φα,Φβ⟩| = |⟨ϕi,ΦΛβΛ⟩| = |⟨ΦT
Λϕi, βΛ⟩| ≤ ∥ΦT

Λϕi∥2 ≤ C. (2.3)

From (2.3) and the definition of θΦ1,k, we have θΦ1,k ≤ C.

Conversely, let βΛ =
ΦT

Λϕi

∥ΦT
Λϕi∥2

and βΛc = 0. Then

|⟨Φα,Φβ⟩| = ∥ΦT
Λϕi∥2 ≤ θΦ1,k,

the inequality is due to the definition of θΦ1,k, then it follows that θΦ1,k ≥ C. To sum up, (2.2) is

proved. �

Remark 2.1. For α = (α(1), . . . , α(n)) ∈ Rn and |α(i1)| ≥ |α(i2)| ≥ · · · ≥ |α(in)| with all ik
distinct, we define αmax(k) = (α(i1), α(i2), . . . , α(ik)). Then from (2.2), we have

θΦ1,k = max
1≤i≤n

∥Ψ(i)
max(k)∥2,

where

Ψ(i) = (ϕT
i ϕ1, . . . , ϕ

T
i ϕi−1, 0, ϕ

T
i ϕi+1, . . . , ϕ

T
i ϕn)

denotes the ith row of ΦTΦ − In. The main cost for calculating θΦ1,k is to compute the strict

upper triangular part of the matrix ΦTΦ. Firstly, we have to calculate n(n−1)/2 inner products

ϕT
i ϕj for i, j ∈ {1, . . . , n} with i ̸= j. Since each of the inner product needs 2n − 1 flops, it

takes O(n3) flops to calculate θΦ1,k. Thus θ
Φ
1,k is indeed computable.

Let S = {i : β(i) ̸= 0} be the support of the k-sparse vector β. Define

M := max
ϕ∈Φ\ΦS

{∥(ΦT
SΦS)

−1ΦT
Sϕ∥1}. (2.4)

The condition

M < 1

is called the Exact Recovery Condition (ERC) in Tropp [18]. It was shown that the ERC is

a sufficient condition for OMP to exact recovery of the support of the signal in the noiseless

case and it is easy to see that the value of M is not computable as it depends on the unknown

support S.
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Lemma 2.3. Let S = supp(β) with |S| ≤ k. If
√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1, then

M ≤
√
kθΦ1,k

1−
√
k − 1θΦ1,k−1

< 1.

Proof. Without loss of generality, we suppose |S| = k. Apply the usual norm bound

M = max
ϕ∈Φ\ΦS

{
∥(ΦT

SΦS)
−1ΦT

Sϕ∥1
}
≤ ∥(ΦT

SΦS)
−1∥1,1 max

ϕ∈Φ\ΦS

∥ΦT
Sϕ∥1.

By Proposition 2.1 and noting that ΦT
Sϕ has no more than k nonzero elements, we have

max
ϕ∈Φ\ΦS

∥ΦT
Sϕ∥1 ≤ max

ϕ∈Φ\ΦS

√
k∥ΦT

Sϕ∥2 ≤
√
kθΦ1,k. (2.5)

Let ΦT
SΦS = Ik + Ψ, each column of Ψ lists the inner products between one atom of ΦS and

the remaining (k − 1) atoms. By the property of ∥ · ∥1,1,

∥Ψ∥1,1 = max
i∈S

∥ΦT
S\{i}ϕi∥1 ≤ max

i∈S

√
k − 1∥ΦT

S\{i}ϕi∥2 ≤
√
k − 1θΦ1,k−1. (2.6)

Since
√
kθΦ1,k+

√
k − 1θΦ1,k−1 < 1, we can obtain ∥Ψ∥1,1 < 1. Thus the Neumann series

∑
(−Ψ)t

converges to the inverse (Ik +Ψ)−1. In this case, we have

∥(ΦT
SΦS)

−1∥1,1 = ∥(Ik +Ψ)−1∥1,1 = ∥
∞∑
t=0

(−Ψ)t∥1,1

≤
∞∑
t=0

∥Ψ∥t1,1 =
1

1− ∥Ψ∥1,1
≤ 1

1−
√
k − 1θΦ1,k−1

. (2.7)

From (2.5), (2.7) and
√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1, we have M ≤

√
kθΦ

1,k

1−
√
k−1θΦ

1,k−1

< 1. �

Remark 2.2. Suppose S = {s1, s2, . . . , sk}. We should emphasize that the first equality in

(2.6) only holds for the matrices with normalized columns and does not hold for general matrices.

For example, let ΦS = 2Ik, then we have

Ψ = ΦT
SΦS − Ik = 3Ik,

hence ∥Ψ∥1,1 = 3. However, for any sℓ, sj ∈ S with sℓ ̸= sj , it holds that

ϕT
sℓ
ϕsj = eTℓ ej = 0,

so ΦT
S\{i}ϕi = 0 for any i ∈ S which implies that the first equality in (2.6) does not hold. In

fact, for general matrix ΦS , let

Λ = diag
(
ϕT
s1ϕs1 , ϕ

T
s2ϕs2 , . . . , ϕ

T
sk
ϕsk

)
,

then the equality in (2.6) is satisfied with Ψ = ΦT
SΦS − Λ.

Lemma 2.4. Let S = supp(β) with |S| ≤ k. If
√
k − 1θΦ1,k−1 < 1, then

1−
√
k − 1θΦ1,k−1 ≤ λmin ≤ λmax ≤ 1 +

√
k − 1θΦ1,k−1,

where λmin and λmax are the minimum and maximum eigenvalues of ΦT
SΦS.
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Proof. Let ΦT
SΦS = Ik + A and λ be any eigenvalue of ΦT

SΦS . By the Gershgorin Circle

Theorem, we have

|λ− 1| ≤ ∥A∥1,1.

From (2.6), we can get |λ− 1| ≤
√
k − 1θΦ1,k−1. �

Lemma 2.5. ([9]) Suppose |S| ≤ k, then the minimum and maximum eigenvalues of ΦT
SΦS,

which are denoted by λmin and λmax, satisfy

1− δΦk ≤ λmin ≤ λmax ≤ 1 + δΦk .

In fact, we can prove that

δΦk = max
Λ⊆{1,··· ,n}

|Λ|=k

{
1− λmin(Φ

T
ΛΦΛ), λmax(Φ

T
ΛΦΛ)− 1

}
.

Lemma 2.6. ([6]) Suppose Φ ∈ Rm×n, then

θΦk1,k2
≤ δΦk1+k2

.

Lemma 2.7. ([2]) Suppose Λ ⊆ S, then the minimum eigenvalue of ΦT
SΦS is less than or equal

to the minimum eigenvalue of ΦT
S\Λ(I−PΛ)ΦS\Λ. The maximum eigenvalue of ΦT

SΦS is greater

than or equal to the maximum eigenvalue of ΦT
S\Λ(I − PΛ)ΦS\Λ.

3. The OMP Algorithm

In this section we present a detailed description of the orthogonal matching pursuit (OMP)

algorithm. We assume that the columns of Φ are normalized, i.e., ∥ϕi∥2 = 1 for i = 1, 2, . . . , n.

The OMP algorithm can be stated as follows [12,16,19].

OMP algorithm.

Step 1. Input: Matrix Φ ∈ Rm×n, y ∈ Rm and the error level η;

Step 2. Initialization: r0 := y, β0 := 0, Λ0 := ∅, i := 1;

Step 3. Find the index λi such that

|⟨ϕλi , ri−1⟩| = argmax
ϕ∈Φ

|⟨ϕ, ri−1⟩|

where ϕ is any column of Φ;

Step 4. Update the support

Λi = Λi−1 ∪ {λi};

Step 5. Update the residual vector

ri = y − Φβi or ri = (I − PΛi)y

where βi = arg min
supp(β)⊆Λi

∥y − Φβ∥2 and PΛi = ΦΛi(Φ
T
Λi
ΦΛi)

−1ΦT
Λi
;

Step 6. If the stopping rule is satisfied, stop the algorithm. Otherwise, set i = i + 1 and

return to step 3.
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By step 5, the residual vector ri is orthogonal to the columns of ΦΛi , i.e., Φ
T
Λi
ri = 0. It is

known, [14,17], that the condition

∥ΦT
Scri−1∥∞ < ∥ΦT

S ri−1∥∞ (3.1)

can guarantee that OMP (step 3) selects a correct index, i.e., λi ∈ S, at ith iteration for

i = 1, 2, . . . , k. In this paper, our discussions are based on (3.1), we shall establish a upper

bound of the left hand of (3.1) as well as establish a lower bound of the right hand of (3.1),

and then to get our sufficient conditions.

In this paper, we will consider two types of bounded noise. One is ℓ2 bounded noise, i.e.,

∥ϵ∥2 ≤ η1 for some constant η1 > 0. The other is ℓ∞ bounded noise where ∥ΦT ϵ∥∞ ≤ η2 for

some constant η2 > 0.

4. Recovery of Sparse Signals with OMP

We establish in this section the main results of this paper. In the noiseless case, a sharp

condition and a computable condition for the exact recovery of the k-sparse signal via the OMP

algorithm are given. In the noisy case, the support of the k-sparse signal can be recovered

exactly under some assumptions.

4.1. ℓ2 Bounded noise

We will consider the ℓ2 bounded noise, i.e., ∥ϵ∥2 ≤ η1 for some constant η1 > 0. A sharp

condition and a computable condition are established.

4.1.1. A sharp condition

We will show that the condition δΦk +
√
kθΦ1,k < 1 is sufficient for the exact recovery of all

k-sparse signals in the noiseless case, and the condition is in fact sharp. In the noisy case, the

following Theorem shows that the support of the k-sparse signal β can be recovered exactly by

the OMP algorithm under the conditions

δΦk +
√
kθΦ1,k < 1 and |β(i)| >

(
1 +

√
1 + δΦk

)
η1

1− δΦk −
√
kθΦ1,k

(i ∈ supp(β)).

Theorem 4.1. Consider the signal recovery model (1.1) with ∥ϵ∥2 ≤ η1. Let β be a k-sparse

signal and S = supp(β). If δΦk +
√
kθΦ1,k < 1 and

|β(j)| >

(
1 +

√
1 + δΦk

)
η1

1− δΦk −
√
kθΦ1,k

(j ∈ S),

then the OMP algorithm with the stopping rule ∥ri∥2 ≤ η1 will exactly recover the support S.

Before proving this Theorem, we will provide some technical analysis of the algorithm firstly.

The analysis sheds light on how and when the OMP algorithm works properly. Let S be the

support of a k-sparse signal β and suppose the algorithm selects the correct indexes in the first

i− 1 iteration, i.e., Λk ⊂ S for all k ≤ i− 1. We will present a condition under which the OMP
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algorithm selects the correct index at the ith iteration, i.e., Λi ⊆ S. The residual vector ri−1

can be written as

ri−1 = y − Φβi−1 = Φ(β − βi−1) + ϵ.

In fact, at the ith iteration, we have

∥ΦT
Scri−1∥∞ = ∥ΦT

ScΦ(β − βi−1) + ΦT
Scϵ∥∞

≤ ∥ΦT
ScΦ(β − βi−1)∥∞ + ∥ΦT

Scϵ∥∞
= max

t∈Sc
|⟨Φ(β − βi−1),Φet⟩|+max

t∈Sc
|⟨ϕt, ϵ⟩|

≤ θΦ1,k∥β − βi−1∥2 + η1. (4.1)

The second inequality is due to the definition of ROC and the Cauchy-Schwarz inequality.

It is easy to see that there exists a permutation matrix P such that

ΦT
S ri−1 = P

(
ΦT

S\Λi−1
ri−1

ΦT
Λi−1

ri−1

)
= P

(
ΦT

S\Λi−1
ri−1

0

)
,

thereby ΦT
S ri−1 is a (k − (i− 1))-sparse vector. Without loss of generality, let P = I, then

∥ΦT
S ri−1∥∞ ≥ 1√

k − (i− 1)
∥ΦT

S ri−1∥2

=
1√

k − (i− 1)
∥ΦT

SΦS(β − βi−1)S +ΦT
S ϵ∥2

≥ 1√
k − (i− 1)

(∥ΦT
SΦS(β − βi−1)S∥2 − ∥ΦT

S ϵ∥2). (4.2)

From Lemma 2.5 we have

∥ΦT
SΦS(β − βi−1)S∥2 ≥ (1− δΦk )∥β − βi−1∥2 (4.3)

and

∥ΦT
S ϵ∥2 ≤ ∥ΦS∥2∥ϵ∥2 ≤

√
1 + δΦk · η1. (4.4)

Substituting (4.3), (4.4) into (4.2), yields that

∥ΦT
S ri−1∥∞ ≥ 1√

k − (i− 1)

(
(1− δΦk )∥β − βi−1∥2 −

√
1 + δΦk · η1

)
. (4.5)

If

∥β − βi−1∥2 >
√
k − (i− 1) ·

(
1 +

√
1 + δΦk

)
η1

1− δΦk −
√
kθΦ1,k

, (4.6)

then from (4.1) and (4.5) we have

∥ΦT
Scri−1∥∞ < ∥ΦT

S ri−1∥∞.

Therefore, (4.6) is a sufficient condition for Λi ⊆ S. Now we are ready to prove Theorem 4.1.

Proof. We first consider the case where |S| = k. Our proof is constituted by three parts.
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Part 1. In this part, we will prove that Λi ⊆ S (i = 1, . . . , k) if Λi−1 ⊆ S. From Λi−1 ⊆ S,

we have

∥β − βi−1∥2 ≥ ∥βS\Λi−1
∥2 ≥

√
k − (i− 1)min

j∈S
|β(j)|

>
√

k − (i− 1)

(
1 +

√
1 + δΦk

)
η1

1− δΦk −
√
kθΦ1,k

,

the last inequality is due to

|β(j)| >

(
1 +

√
1 + δΦk

)
η1

1− δΦk −
√
kθΦ1,k

(j ∈ S).

The above inequality shows that (4.6) holds, therefore all the k correct indexes will be selected

in the first k steps, i.e.,

Λi ⊆ S(i = 1, . . . , k).

Part 2. In this part, we will prove ∥rk∥2 ≤ η1. Let PΛk
denote the projection onto the

linear space spanned by ΦS . Then

∥rk∥2 = ∥(I − PΛk
)ϵ∥2 ≤ ∥ϵ∥2 ≤ η1.

So when all the k correct indexes are selected, the ℓ2 norm of the residual vector will be be less

than or equal to η1 and hence the algorithm will stop.

Part 3. In this part, we will show that the OMP algorithm does not stop early, i.e.,

∥ri∥2 > η1(i = 1, . . . , k − 1).

In fact, when i < k

∥ri∥2 = ∥Φ(β − βi) + ϵ∥2 ≥ ∥Φ(β − βi)∥2 − ∥ϵ∥2 ≥
√
1− δΦk ∥β − βi∥2 − η1

>
√
1− δΦk

(
1 +

√
1 + δΦk

)
η1

1− δΦk −
√
kθΦ1,k

− η1 ≥ 2η1 − η1 = η1.

Combining above three parts and noting that Λ0 ⊆ S, we have proved that Theorem 4.1 holds

for |S| = k.

Now we consider the case where signal β has less than k nonzero elements, i.e., |S| < k. By

the established result above, if

|β(j)| >

(
1 +

√
1 + δΦ|S|

)
η1

1− δΦ|S| −
√
|S|θΦ1,|S|

(j ∈ S), (4.7)

then OMP will exactly recover the support S in |S| iterations, and the algorithm will stop, i.e.,

∥r|S|∥2 ≤ η1.

Moreover, noting that δΦ|S| ≤ δΦk and θΦ1,|S| ≤ θΦ1,k, it is easy to verify that (4.7) can be

derived from the condition of Theorem 4.1, i.e.,

|β(j)| >

(
1 +

√
1 + δΦk

)
η1

1− δΦk −
√
kθΦ1,k

(j ∈ S).
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This complete the proof. �

From Theorem 4.1, we have the following corollary which shows that the condition

δΦk +
√
kθΦ1,k < 1

is sufficient for the exact recovery of k-sparse signals in the noiseless case.

Corollary 4.1. Consider the signal recovery model (1.1) with ∥ϵ∥2 = 0. If δΦk +
√
kθΦ1,k < 1,

then all k-sparse signals can be recovered exactly in k-iterations by the OMP algorithm.

Remark 4.1. From Corollary 4.1, we know that δΦk +
√
kθΦ1,k < 1 is sufficient to recover exactly

all k-sparse signals β in k-iterations by the OMP algorithm. Noting that θΦ1,k ≤ δΦk+1(Lemma

2.6) and δΦk ≤ δΦk+1, it is obvious δ
Φ
k +

√
kθΦ1,k < 1 is weaker than δΦk+1 < 1√

k+1
. Thus Theorem

3.1 in [14] is improved.

The following theorem shows that the upper bound 1 is sharp for the exact recovery in the

noiseless case.

Theorem 4.2. Let k be a positive integer. Then there exists a sensing matrix Φ with normal-

ized columns such that δΦk +
√
kθΦ1,k = 1, and for some k-sparse signals u, v ∈ Rn with u ̸= v

satisfying Φu = Φv. In other words, there does not exist any algorithm that can exactly recover

all k-sparse signals β based on (Φ, y) with y = Φβ. In particular, the OMP algorithm cannot

recover all k-sparse signals in the noiseless case.

Proof. Let e = (1, 1, . . . , 1)T ∈ R2k and

Φ =

√
2k

2k − 1
·

 ϕ(1)

...

ϕ(2k−1)

 ∈ R(2k−1)×2k, (4.8)

where

ϕ(i) =

( i︷ ︸︸ ︷
−
√
i2 + i

i2 + i
, . . . ,−

√
i2 + i

i2 + i
,

√
i2 + i

i+ 1
, 0, . . . , 0

)
∈ R2k, i = 1, 2, . . . , 2k − 1.

are row vectors. It is easy to verify that each column of Φ is of length 1 in ℓ2 norm and Φe = 0.

By simple calculation, we get

ΦTΦ =


1 − 1

2k−1 · · · − 1
2k−1

− 1
2k−1 1 · · · − 1

2k−1
...

...
. . .

...

− 1
2k−1 − 1

2k−1 · · · 1


2k×2k

,

then for any Λ ⊆ {1, . . . , 2k} with |Λ| = k, the eigenvalues {λi}ki=1 of ΦT
ΛΦΛ are

λ1 = · · · = λk−1 = 1 +
1

2k − 1
and λk = 1− k − 1

2k − 1
.
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Therefore,

δΦk = max{1− λmin(Φ
T
ΛΦΛ), λmax(Φ

T
ΛΦΛ)− 1}

= max{1− λk, λk−1 − 1} =
k − 1

2k − 1
. (4.9)

It follows from Remark 2.1, we have

√
kθΦ1,k =

√
k

[(
−1

2k − 1

)2

+ . . .+

(
−1

2k − 1

)2

︸ ︷︷ ︸
k

] 1
2

=
k

2k − 1
. (4.10)

Thereby, from (4.9) and (4.10) we have

δΦk +
√
kθΦ1,k =

k − 1

2k − 1
+

k

2k − 1
= 1.

Finally, suppose

u = (

k︷ ︸︸ ︷
1, . . . , 1,

k︷ ︸︸ ︷
0, . . . , 0)T , v = (

k︷ ︸︸ ︷
0, . . . , 0,

k︷ ︸︸ ︷
−1, . . . ,−1)T .

Since Φ(u− v) = 0, then u, v are both k-sparse such that Φu = Φv. Therefore, it is impossible

to recover both u and v only base on (Φu,Φ), which finishes the proof. �

One of the most commonly used approaches for sparse signal recovery is the ℓ1-minimization,

i.e., minβ{∥β∥1 : Aβ = b} (we consider the noiseless case) and the sufficient conditions in

terms of the RIC or ROC for the exact recovery of k-sparse signals had been extensively

studied [3, 5, 22]. As was shown in [5, 22], δΦk + θΦk,k < 1 is a sharp condition for the exact

recovery via ℓ1-minimization. From Lemma 2.1, we have θΦk,k ≤
√
kθΦ1,k, so if δΦk +

√
kθΦ1,k < 1

then we can get δΦk +θΦk,k < 1, thus δΦk +
√
kθΦ1,k < 1 is a sufficient condition for ℓ1-minimization

to exactly recover k-sparse signal. Moreover, from Theorem 4.2 we know that δΦk +
√
kθΦ1,k < 1

is also a sharp condition for ℓ1-minimization. For the OMP algorithm, by simple calculation

we know that the matrix Φ constructed as (4.8) satisfies δΦk + θΦk,k = 1, so δΦk + θΦk,k ≥ 1 is not a

sufficient condition for the exact recovery via OMP. What’s more, other approaches for sparse

signal recovery had been considered as well, e.g., Wen et al. [20] considered the ℓp-minimization

and Xu [23] studied the orthogonal multi-matching pursuit (OMMP) algorithm.

Recently, Mo [13] and Wen [21] have considered the RIC for the OMP algorithm under the

condition that the columns of the sensing matrix Φ are not necessary to being normalized, and

a corresponding sharp condition has been established.

Remark 4.2. Theorem 4.2 is different from the Theorem 2.8 given in Cai and Zhang [5], since

our analysis is based on the matrix Φ with normalized columns and their counterexample cannot

be used to prove Theorem 4.2.

Remark 4.3. Theorem 4.2 shows that the upper bound 1 is sharp in the sense that for any

ξ > 0, the condition δΦk +
√
kθΦ1,k < 1 + ξ fails to guarantee the exact recovery of all k-sparse

signals.
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4.1.2. A computable condition

It is shown in [1] that the computation of δΦk can be difficult, while as was already mentioned in

Remark 2.1, θΦ1,k can be efficiently computed, in this section we will give a computable condition

√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1.

Theorem 4.3. Consider the signal recovery model (1.1) with ∥ϵ∥2 ≤ η1. Let β be a k-sparse

signal and S = supp(β). If
√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1 and

|β(i)| > 2η1

1−
√
kθΦ1,k −

√
k − 1θΦ1,k−1

(i ∈ S),

then the OMP algorithm with the stopping rule ∥ri∥2 ≤ η1 will exactly recover the support S.

Similar to the above discussions, we first provide some technical analysis of the algorithm.

The analysis sheds light on how and when the OMP algorithm works properly. Let S be the

support of a k-sparse signal β and suppose the algorithm selects the correct indexes at the first

i− 1 iteration, i.e., Λi−1 ⊆ S. From the OMP algorithm, we know that

PΛi−1 = ΦΛi−1(Φ
T
Λi−1

ΦΛi−1)
−1ΦT

Λi−1
,

then

∥I − PΛi−1∥2 ≤ 1, PhiTΛi−1

(
I − PΛi−1

)
= 0, (I − PΛi−1)ΦΛi−1 = 0. (4.11)

Since the residual vector ri−1 can be written as ri−1 = (I −PΛi−1)y = (I −PΛi−1)ΦSβS + (I −
PΛi−1)ϵ and ∥ϵ∥2 ≤ η1, we have

∥ΦT
S ri−1∥∞ = ∥ΦT

S (I − PΛi−1)ΦSβS +ΦT
S (I − PΛi−1)ϵ∥∞

≥ ∥ΦT
S (I − PΛi−1)ΦSβS∥∞ − ∥ΦT

S (I − PΛi−1)ϵ∥∞
= ∥ΦT

S (I − PΛi−1)ΦSβS∥∞ −max
t∈S

|⟨ϕt, (I − Pi−1)ϵ⟩|

≥ ∥ΦT
S (I − PΛi−1)ΦSβS∥∞ − η1, (4.12)

and

∥ΦT
Scri−1∥∞ = ∥ΦT

Sc(I − PΛi−1
)ΦSβS +ΦT

Sc(I − PΛi−1
)ϵ∥∞

≤ ∥ΦT
Sc(I − PΛi−1

)ΦSβS∥∞ + ∥ΦT
Sc(I − PΛi−1

)ϵ∥∞
≤ ∥ΦT

Sc(I − PΛi−1)ΦSβS∥∞ + η1. (4.13)

In order to present a computable condition, the following lemma is necessary.

Lemma 4.1. ([2]) Let M be defined as in (2.4). Then

∥ΦT
Sc(I − PΛi−1)ΦSβS∥∞ ≤ M · ∥ΦT

S (I − PΛi−1)ΦSβS∥∞.

Suppose
√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1, from Lemma 2.3 and Lemma 4.1, we have

∥ΦT
Sc(I − PΛi−1)ΦSβS∥∞ ≤

√
kθΦ1,k

1−
√
k − 1θΦ1,k−1

· ∥ΦT
S (I − PΛi−1)ΦSβS∥∞. (4.14)
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From (4.12), (4.13) and (4.14), we know that the condition

∥ΦT
S (I − PΛi−1)ΦSβS∥∞ >

1−
√
k − 1θΦ1,k−1

1−
√
kθΦ1,k −

√
k − 1θΦ1,k−1

· 2η1 (4.15)

implies (3.1). In other words, the previous discussion shows that (4.15) is a sufficient condition

under which OMP will make a correct decision. It follows from (4.11) that

∥ΦT
S (I − PΛi−1)ΦSβS∥∞ = ∥ΦT

S\Λi−1
(I − PΛi−1)ΦSβS∥∞

= ∥ΦT
S\Λi−1

(I − PΛi−1)ΦS\Λi−1
βS\Λi−1

∥∞

≥ 1√
k − (i− 1)

∥ΦT
S\Λi−1

(I − PΛi−1)ΦS\Λi−1
βS\Λi−1

∥2

≥ 1√
k − (i− 1)

λmin∥βS\Λi−1
∥2

≥ 1√
k − (i− 1)

(1−
√
k − 1θΦ1,k−1)∥βS\Λi−1

∥2, (4.16)

the last two inequality are due to Lemma 2.7 and Lemma 2.4.

Suppose

∥βS\Λi−1
∥2 >

√
k − (i− 1) · 2η1

1−
√
kθΦ1,k −

√
k − 1θΦ1,k−1

, (4.17)

then (4.15) can be obtained from (4.16), thereby (3.1) holds. Therefore, (4.17) is a sufficient

condition for OMP to select a correct index at the current step. Based on the above discussions,

now we will prove Theorem 4.3.

Proof of Theorem 4.3. Similar to the proof of Theorem 4.1, we only consider the case where

signal β just has k-nonzero elements, i.e., |S| = k. For |S| < k, the arguments in the proof of

Theorem 4.1 also works.

One can verify that |β(i)| > 2η1

1−
√
kθΦ

1,k−
√
k−1θΦ

1,k−1

ensures that (4.17) holds, thereby the

OMP algorithm selects all the k correct indexes in the first k steps, and after all the k correct

indexes are selected the OMP algorithm will stop, i.e., ∥rk∥2 ≤ η1. It remains to show that

OMP does not stop early.

∥ri∥2 = ∥(I − PΛi)ΦSβS + (I − PΛi)ϵ∥2
≥ ∥(I − PΛi)ΦSβS∥2 − ∥(I − PΛi)ϵ∥2
≥ ∥(I − PΛi)ΦS\Λi

βS\Λi
∥2 − η1.

It follows from Lemma 2.7 and Lemma 2.4 that

∥(I − PΛi)ΦS\Λi
βS\Λi

∥2 ≥ λ
1
2

min(Φ
T
SΦS)∥βS\Λi

∥2
≥ (1−

√
k − 1θΦ1,k−1)

1
2 ∥βS\Λi

∥2
> 2η1.

So ∥ri∥2 ≥ ∥(I − PΛi)ΦS\Λi
βS\Λi

∥2 − η1 > η1. Thus we complete the proof. �

Remark 4.4. The nonzero coefficients β(i) are required to satisfy

|β(i)| >

(
1 +

√
1 + δΦk

)
η1

1− δΦk −
√
kθΦ1,k
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in Theorem 4.1 and the nonzero coefficients β(i) are required to satisfy

|β(i)| > 2η1

1−
√
kθΦ1,k −

√
k − 1θΦ1,k−1

in Theorem 4.3. Since(
1 +

√
1 + δΦk

)
η1 ≥ 2η1 and 1− δΦk −

√
kθΦ1,k ≥ 1−

√
kθΦ1,k −

√
k − 1θΦ1,k−1,

the size of (
1 +

√
1 + δΦk

)
η1

1− δΦk −
√
kθΦ1,k

and
2η1

1−
√
kθΦ1,k −

√
k − 1θΦ1,k−1

cannot immediately be told to be one larger than the other, or vice-versa. Therefore, Theorem

4.1 and Theorem 4.3 are independent of each other.

From Theorem 4.3, we have the following corollary.

Corollary 4.2. Consider the signal recovery model (1.1) with ∥ϵ∥2 = 0. If

√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1,

then all k-sparse signals can be recovered exactly in k-iterations by the OMP algorithm.

From Lemma 2.2, we know that
√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1 is weaker than µ < 1

2k−1 , so

some related results ([2], Theorem 1 etc.) are also improved. In fact, the upper bound 1 is

sharp for the exact recovery in the noiseless case.

Remark 4.5. The upper bound 1 is in fact sharp in the sense that for any ξ > 0,

√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1 + ξ

does not ensure such exact recovery. The specific counterexample which was constructed in the

proof of Theorem 4.2 is useful as well, since

√
k − 1θΦ1,k−1 =

k − 1

2k − 1

and
√
kθΦ1,k = k

2k−1 lead to
√
kθΦ1,k +

√
k − 1θΦ1,k−1 = 1.

4.2. ℓ∞ Bounded noise

We now turn to the case where the noise ϵ is assumed to satisfy ∥ΦT ϵ∥∞ ≤ η2 for some

constant η2 > 0. Let S be the support of k-sparse signal β and suppose the algorithm selects

the correct indexes at the first i − 1 iteration, i.e., Λi−1 ⊆ S. We will provide some technical

analysis of the algorithm. The analysis sheds light on how and when the OMP algorithm works

properly.

Similar to the analysis of ℓ2 bounded noise, (4.1) is satisfied(where η1 is replaced by η2).

Since

ΦT
S ri−1 =

(
ΦT

S\Λi−1
ri−1

ΦT
Λi−1

ri−1

)
=

(
ΦT

S\Λi−1
ri−1

0

)
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is a (k − (i− 1))-sparse vector, therefore

∥ΦT
S ri−1∥∞ ≥ 1√

k − (i− 1)
∥ΦT

S ri−1∥2

=
1√

k − (i− 1)
∥ΦT

SΦS(β − βi−1)S +ΦT
S ϵ∥2

≥ 1√
k − (i− 1)

(∥ΦT
SΦS(β − βi−1)S∥2 − ∥ΦT

S ϵ∥2)

≥ 1√
k − (i− 1)

[
λmin(Φ

T
SΦS)∥β − βi−1∥2 −

√
k∥ΦT

S ϵ∥∞
]

≥ 1√
k − (i− 1)

(1−
√
k − 1θΦ1,k−1)∥β − βi−1∥2 −

√
kη2√

k − (i− 1)
, (4.18)

the last inequality is due to Lemma 2.4.

Suppose

∥β − βi−1∥2 >
√

k − (i− 1) · (1 +
√
k)η2

1−
√
k − 1θΦ1,k−1 −

√
kθΦ1,k

, (4.19)

from (4.1) and (4.18), we know that (3.1) holds. Therefore, (4.19) is a sufficient condition for

OMP selects a correct index at the current step.

Theorem 4.4. Consider the signal recovery model (1.1) with ∥ΦT ϵ∥∞ ≤ η2. Let β be a k-sparse

signal and S = supp(β). If
√
kθΦ1,k +

√
k − 1θΦ1,k−1 < 1 and

|β(i)| > 2
√
kη2

1−
√
kθΦ1,k −

√
k − 1θΦ1,k−1

(i ∈ S),

then the OMP algorithm with the stopping rule ∥ΦT ri∥∞ ≤ η2 will return the support S.

Proof. We only consider the case where signal β just has k-nonzero elements, i.e., |S| = k.

For the case where |S| < k, the argument in the proof of Theorem 4.1 also works. One can

verify that

|β(i)| > 2
√
kη2

1−
√
kθΦ1,k −

√
k − 1θΦ1,k−1

(i ∈ S)

ensures that (4.19) holds, thereby the OMP algorithm selects all the k correct indexes in the

first k steps.

We now turn to the stopping rule. It remains to prove that the OMP algorithm does not

stop early, i.e., ∥ΦT ri∥∞ > η2 for i < k. In fact

∥ΦT ri∥∞ = ∥ΦTΦ(β − βi) + ΦT ϵ∥∞
≥ ∥ΦTΦS(β − βi)S∥∞ − ∥ΦT ϵ∥∞
≥ ∥ΦT

SΦS(β − βi)S∥∞ − η2. (4.20)

Since ΦT
SΦS(β − βi)S ∈ R|S| and |S| = k, we have

∥ΦT
SΦS(β − βi)S∥∞ ≥ 1√

k
∥ΦT

SΦS(β − βi)S∥2

≥
1−

√
k − 1θΦ1,k−1√

k
∥β − βi∥2 > 2η2, (4.21)
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the second inequality is due to Lemma 2.4. So

∥ΦT ri∥∞ ≥ ∥ΦT
SΦS(β − βi)S∥∞ − η2 > 2η2 − η2 = η2.

Thus we complete the proof. �

Remark 4.6. Let S̄ be the support set that obtained by the OMP algorithm with certain

stopping rules being satisfied. Theorem 4.3 presents that under certain conditions the OMP

can exactly recover the support S in the ℓ2 bounded noise case, i.e., S̄ = S. In the ℓ∞ bounded

noise case, Theorem 4.4 only shows that the OMP can return the support under some conditions,

i.e., S ⊆ S̄.
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