
Journal of Computational Mathematics

Vol.31, No.6, 2013, 549–572.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1307-m3955

HIGHLY OSCILLATORY DIFFUSION-TYPE EQUATIONS*
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Abstract

We explore new asymptotic-numeric solvers for partial differential equations with highly

oscillatory forcing terms. Such methods represent the solution as an asymptotic series,

whose terms can be evaluated by solving non-oscillatory problems and they guarantee

high accuracy at a low computational cost. We consider two forms of oscillatory forcing

terms, namely when the oscillation is in time or in space: each lends itself to different

treatment. Numerical examples highlight the salient features of the new approach.
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1. Introduction

Partial differential equations with highly oscillatory forcing terms arise in various branches of

science and engineering. In particular, in modern communication systems, high frequencies and

signals of widely-varying frequency content abound and present a serious challenge to existing

numerical solvers [28, 29]. This is because the highly oscillatory behaviour of the problem

compels the use of an exceedingly small step size with such methods. This results in significant

accumulation of error and a prohibitive computational workload. The purpose of this paper

is to address this issue and develop a numerical methodology which allows for an exceedingly

accurate, yet affordable, discretization of partial differential equations with highly oscillatory

forcing terms.

The numerical approach presented in this paper is based on the combination of asymptotic

and numerical techniques. It involves asymptotic expansions in inverse powers of the oscillatory

parameter, ω and numerical discretization of non-oscillatory partial differential equations which
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are obtained in the course of the asymptotic expansion. In some situations, this numerical effort

can be further reduced by using analytic results.

The core technique has been employed for the numerical approximation of ordinary differen-

tial equations that contain highly-oscillatory forcing terms in [12–15]. For example, the solution

of the ordinary differential system

y′ = f(y) +

∞∑
n=−∞

bn(t)einωt, t ≥ 0, y(0) = y0, (1.1)

can be expanded asymptotically in the form

y(t) = p0,0(t) +

∞∑
r=1

1

ωr

∞∑
n=−∞

pr,n(t)einωt, t ≥ 0, (1.2)

where the functions pr,n are independent of ω, hence non-oscillatory, and can be obtained for

n = 0 by solving a non-oscillatory ordinary differential equation and by recursion for n 6= 0 [15].

The asymptotic expansion (1.2) has been shown to have very important benefits compared

to standard discretization methods for ordinary differential equations. Firstly, the method is

considerably more efficient for large values of the oscillatory parameter. Secondly, the compu-

tational effort is independent of the value of that parameter [12]. This success motivates our

effort to extend it from systems of the form (1.1) to partial differential equations, the subject

matter of this paper.

The current paper concentrates on the diffusion equation with Dirichlet or Neumann bound-

ary conditions in the interval [−1, 1] and it is concerned with two types of oscillatory terms,

namely when the oscillation occurs in time or in space. We demonstrate that a model simi-

lar to (1.2) falls short of describing a solution of a diffusion equation with a highly-oscillatory

forcing term but a considerably more complicated ansatz is equal to this task. We also observe

an interesting phenomenon: while in the case of time-like oscillations in the forcing term, the

solution, similar to (1.2), consists of a non-oscillatory component overlaid with small amplitude

oscillations, the solution for a forcing term oscillating in space is itself non-oscillatory!

The extension of the methodology underlying (1.2), blending asymptotic and numerical

techniques, into the realm of partial differential equations is far from simple. In particular,

it necessitates the solution of initial-boundary value problems which, although non-oscillatory,

present us with a major challenge once we wish to obtain high accuracy. This is further

elaborated in the sequel.

Interesting applications of partial differential equations with highly oscillatory forcing terms

are not restricted to the diffusion equation: a case in point is computational electronics, where

the differential operator is hyperbolic [29]. We can also remark that Modified Fourier Expan-

sions have been developed to treat analytical and numerical problems in partial differential

equations [6–11]. However, this type of expansion uses a different kind of approach and it has

been used in a different kind of problem setting to the one we address in this paper. In the

current paper we consider a special case, while endeavouring to establish a general framework

relevant to other highly oscillatory equations.

The theory of Laplace–Dirichlet and Laplace–Neumann expansions in parallelepipeds is

quite comprehensively understood (e.g., [1]). We recognise that the extension of the expansions

in this paper to several dimensions is likely to result in fairly unpleasant expressions, but this

is a technical, rather than conceptual difficulty. We note that such expansions have been also
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extended by Huybrechs et al. [16] to triangles: we do not mention this in the current paper

because this would be an unnecessary distraction. It is true that our expansions are unlikely

to be practical in general domains or in a free-boundary setting. Having said so, as we have

already mentioned, this is a preliminary paper, addressing such problems for the first time in

an organised manner, and one has to start somewhere.

2. Time-Like Oscillations

2.1. The general framework

We consider the univariate diffusion equation with a time-like oscillatory forcing term,

∂tu = ∂2xu+

∞∑
n=−∞

bn(x, t)einωt, x ∈ [−1, 1], t ≥ 0. (2.1)

given with the initial condition

u(x, 0) = φ(x), x ∈ [−1, 1], (2.2)

and either Dirichlet,

u(±1, t) = ν±(t), t ≥ 0, (2.3)

or Neumann

∂xu(±1, t) = µ±(t), t ≥ 0, (2.4)

boundary conditions. We assume for simplicity that the functions bn, φ, ν± and µ± are all

analytic but our results can be extended to sufficiently differentiable functions in a transparent

manner. Moreover, we assume that the functions bn decay sufficiently rapidly for |n| � 1,

rendering the infinite sum convergent.

Commencing from Dirichlet boundary conditions (2.3), we seek a solution of the form

u(x, t) = p0(x, t) +
∑
n 6=0

pn(x, t, ω)einωt, t ≥ 0, x ∈ [−1, 1], (2.5)

where p0 and u share initial and boundary conditions,

p0(x, 0) = φ(x), x ∈ [−1, 1], p0(±1, t) = ν±(t), t ≥ 0,

while each pn, n 6= 0, obeys zero initial and boundary conditions. Note that the pns for n 6= 0

are allowed to depend upon ω, indeed be oscillatory. Substituting (2.5) into (2.1) results in

∂tp0 + ω
∑
n6=0

inpneinωt +
∑
n 6=0

(∂tpn)einωt

= ∂2xp0 +
∑
n 6=0

(∂2xpn)einωt +

∞∑
n=−∞

bneinωt.

Thus, separating frequencies, we obtain the following equations,

∂tp0 = ∂2xp0 + b0, t ≥ 0, x ∈ [−1, 1], (2.6)
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where

p0(x, 0) = φ(x), x ∈ [−1, 1], p0(±1, t) = ν±(t), t ≥ 0,

∂tpn = (∂2x − inω)pn + bn, t ≥ 0, x ∈ [−1, 1], (2.7)

where

pn(x, 0) ≡ 0, x ∈ [−1, 1], pn(±1, t) ≡ 0, t ≥ 0,

for every n 6= 0.

2.2. The computation of p0

There are several alternative ways of computing (2.6), but in this paper we seek to derive a

solution which also makes sense as an analytic construct, so that we can make better sense of the

properties of the functions pn, n ∈ Z. It is convenient to this end to seek an explicit expansion of

the solution. A prime contender is a spectral method, expanding p0, say, as a linear combination

of Chebyshev polynomials. However, this leads to unwieldy expansion terms, which cannot be

written explicitly, as well as to possible instability once the expansion is truncated [4,17,19]. We

employ instead Birkhoff expansions, i.e. expansions in an orthonormal basis of eigenfunctions

of a differential operator [27]. Specifically, we use the eigenvalues of the differential operator ∂2x
in [−1, 1], accompanied by zero Dirichlet boundary conditions: the Laplace-Dirichlet basis [1].

Given a function f ∈ L2[−1, 1] which vanishes at ±1, we expand

f(x) ∼
∞∑
m=0

fCm cosπ(m+ 1
2 )x+

∞∑
m=1

fSm sinπmx, (2.8)

where

fCm =

∫ 1

−1
f(x) cosπ(m+ 1

2 )xdx, m ∈ Z+,

fSm =

∫ 1

−1
f(x) sinπmxdx, m ∈ N.

The expansion (2.8) converges for all f ∈ C1[−1, 1] [1]. The expansion coefficients can be

computed rapidly with the Fast Fourier Transform, alternatively (and even faster) they can

be approximated using asymptotic expansions of highly oscillatory integrals, similarly to the

Laplace-Neumann expansions in [1, 25].

However, before we expand the solution of (2.1), we need to induce zero Dirichlet boundary

conditions at the price of amending the forcing term. Thus, let

p̃0(x, t) = p0(x, t)− 1

2
(1− x)ν−(t)− 1

2
(1 + x)ν+(t), t ≥ 0, x ∈ [−1, 1].

Trivially, it obeys the diffusion-type equation

∂tp̃0 = ∂2xp̃0 + b̃0, t ≥ 0, x ∈ [−1, 1], (2.9)

where

p̃0(x, 0) = φ̃(x), x ∈ [−1, 1], p̃0(±1, t) ≡ 0, t ≥ 0,
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and

b̃0(x, t) = b0(x, t)− 1
2 (1− x)ν′−(t)− 1

2 (1 + x)ν′+(t), t ≥ 0, x ∈ [−1, 1],

φ̃(x) = φ(x)− 1

2
(1− x)ν−(0)− 1

2
(1 + x)ν+(0), x ∈ [−1, 1].

Assuming that

b̃0(x, t) =

∞∑
m=0

α0,m(t) cosπ(m+ 1
2 )x+

∞∑
m=1

β0,m(t) sinπmx,

φ̃0(x) =

∞∑
m=0

cm cosπ(m+ 1
2 )x+

∞∑
m=1

dm sinπmx,

where

α0,m(t) =

∫ 1

−1
b̃0(x, t) cosπ(m+ 1

2 )xdx, β0,m(t) =

∫ 1

−1
b̃0(x, t) sinπmxdx,

cm =

∫ 1

−1
φ̃(x) cosπ(m+ 1

2 )xdx, dm =

∫ 1

−1
φ̃(x) sinπmxdx,

we seek the expansion

p̃0(x, t) =

∞∑
m=0

ρ0,m cosπ(m+ 1
2 )x+

∞∑
m=1

σ0,m sinπmx.

Substitution in (2.9) yields the scalar ordinary differential equations whose explicit solution are

ρ0,m(t) = e
−π2

(
m+

1
2

)2
t
cm +

∫ t

0

e
−π2

(
m+

1
2

)2
(t−τ)

α0,m(τ)dτ, m ∈ Z+,

σ0,m(t) = e−π
2m2tdm +

∫ t

0

e−π
2m2(t−τ)β0,m(τ)dτ, m ∈ N.

Note that

p0(x, t) =
1

2
(1− x)ν−(t) + 1

2 (1 + x)ν+(t)

+

∞∑
m=0

ρ0,m(t) cosπ(m+ 1
2 )x+

∞∑
m=1

σ0,m(t) sinπmx, (2.10)

is essentially a consequence of the Duhamel principle [26], rendered explicitly and in a form

which will be found convenient in the sequel. Note further that, being independent of ω, p0
does not oscillate.

2.3. The computation of pn, n 6= 0

The equation (2.7) is already equipped with zero boundary conditions, and this makes its

Laplace-Dirichlet expansion somewhat more transparent. Thus, expanding

bn(x, t) =

∞∑
m=0

αn,m(t) cosπ(m+ 1
2 )x+

∞∑
m=1

βn,m(t) sinπmx,
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we seek ρn,m(t), m ∈ Z+, and σn,m(t), m ∈ N, such that

pn(x, t) =

∞∑
m=0

ρn,m(t) cosπ(m+ 1
2 )x+

∞∑
m=1

σn,m(t) sinπmx.

Substitution in (2.7) results in ordinary differential equations whose explicit solutions are

ρn,m(t) = e
−
[
π2
(
m+

1
2

)2
+inω

]
t
∫ t

0

e

[
π2(m+

1
2 )

2+inω
]
τ
αn,m(τ)dτ, m ∈ Z+,

σn,m(t) = e−[π
2m2+inω]t

∫ t

0

e[π
2m2+inω]τβn,m(τ)dτ, m ∈ N.

This, however, is not the end of the story, because the ρn,m and σn,m are expressed above as

highly oscillatory integrals. To render the oscillation tractable, we expand them into asymptotic

series. It is already known from [24] that∫ t

0

g(τ)eητdτ ∼
∞∑
k=0

(−1)k

ηk+1
[g(k)(t)eηt − g(k)(0)], |η| � 1, (2.11)

for any g ∈ C∞[0, t].

We first let η = π2(m+ 1
2 )2 + inω, g = αn,m, whereby

ρn,m(t) ∼
∞∑
k=0

(−1)k[
π2
(
m+ 1

2

)2
+ inω

]k+1

{
α(k)
n,m(t)− α(k)

n,m(0)e
−[π2

(
m+

1
2

)2
+inω]t

}
. (2.12)

Likewise, η = π2m2 + inω, g = βn,m, results in

σn,m(t) ∼
∞∑
k=0

(−1)k

[π2m2 + inω]k+1

{
β(k)
n,m(t)− β(k)

n,m(0)e−[π
2m2+inω]t

}
. (2.13)

2.4. Assembling the solution

Substituting the explicit values of p′ns from (2.10), (2.12)–(2.13) into (2.5) gives

u(x, t) = p0(x, t) +
∑
n 6=0

pn(x, t)einωt

∼ 1

2
(1− x)ν−(t) + 1

2 (1 + x)ν+(t)

+

∞∑
m=0

∑
n6=0

∞∑
k=0

(−1)k

[π2(m+ 1
2 )2+inω]k+1

[
α(k)
n,m(t)einωt − α(k)

n,m(0)e−π
2(m+ 1

2 )
2t
]

+ e−π
2(m+ 1

2 )
2tcm +

∫ t

0

e−π
2(m+ 1

2 )
2(t−τ)α0,m(τ) dτ

}
cosπ(m+ 1

2 )x

+

∞∑
m=1

∑
n 6=0

∞∑
k=0

(−1)k

[π2m2 + inω]k+1

[
β(k)
n,m(t)einωt − β(k)

n,m(0)e−π
2m2t

]
+ e−π

2m2tdm +

∫ t

0

e−π
2m2(t−τ)β0,m(τ) dτ

}
sinπmx.
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We deduce that

u(x, t) = q0(x, t) +
∑
n 6=0

qn(x, t)einωt, (2.14)

where

q0(x, t) ∼ 1

2
(1− x)ν−(t) + 1

2 (1 + x)ν+(t) +

∞∑
m=0

e−π
2(m+ 1

2 )
2t

{
cm (2.15)

+

∫ t

0

eπ
2(m+ 1

2 )
2τα0,m(τ) dτ −

∑
n 6=0

∞∑
k=0

(−1)kα
(k)
n,m(0)

[π2(m+ 1
2 )2 + inω]k+1

}
cosπ(m+ 1

2 )x

+

∞∑
m=1

e−π
2m2t

{
dm +

∫ t

0

eπ
2m2τβ0,m(τ) dτ −

∑
n 6=0

∞∑
k=0

(−1)kβ
(k)
n,m(0)

[π2m2 + inω]k+1

}
sinπmx,

qn(x, t) ∼
∞∑
m=0

∞∑
k=0

(−1)kα
(k)
n,m(t)

[π2(m+ 1
2 )2 + inω]k+1

cosπ(m+ 1
2 )x

+

∞∑
m=1

∞∑
k=0

(−1)kβ
(k)
n,m(t)

[π2m2 + inω]k+1
sinπmx, n 6= 0. (2.16)

Note that, although the qns depend upon ω, they are not oscillatory in ω.

It is possible to expand all terms such that π2m2 < |n|ω asymptotically in inverse powers

of ω, while if π2(m + 1
2 )2 > |n|ω then terms can be expanded in inverse powers of m. This is

a tell-tale indicator of the fact that we have two highly oscillatory phenomena intermingling:

the high oscillation originating in ω and the high oscillation of the basis terms cosπ(m + 1
2 )x

and sinπmx. Such expansions needlessly complicate matters and we will not pursue this route

further.

The explicit expansions (2.15) and (2.16) indicate that the components of q0− 1
2 (1−x)ν−−

1
2 (1+x)ν+ corresponding to different values of m decay rapidly for increasing t: this, of course,

is a consequence of the rapid dissipation of the diffusion operator. The coefficients qn, n 6= 0, of

oscillatory terms, however, need not exhibit decay for increasing t. However, its leading term

being independent of ω, q0 is O(1) in ω, while qn for n 6= 0 is O
(
ω−1

)
, we expect the solution to

consist of a non-oscillatory signal of larger amplitude, with rapid, small amplitude oscillations

superimposed upon it. This is precisely the situation for ordinary differential equations fitting

into model (1.2) and is consistent with Fig. 2.1.

2.5. Implementation issues

We compute u(x, t) in a time-stepping manner for {tN}N∈N, where tN+1 = tN + ∆tN . An

obvious reason is that the numerical calculation of the non-oscillatory integrals in (2.15) by

quadrature is best done in fairly small intervals, but the rationale for time-stepping is more

subtle. The expansions (2.15) and (2.16) are asymptotic and in general it might be too much

to expect that they converge (or give good results upon truncation) for all t ≥ 0. Therefore it

is a good strategy to ‘restart’ the asymptotic expansion once in a while. Having said so, the

steps ∆t` need not be small, since their magnitude does not play a major role in keeping the

error at bay.

In what follows we describe the N = 0 step, the generalisation to other values of N being

straightforward. The construction of (2.14) in a form amenable to numerical computation

requires a number of considerations.
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Firstly, the range of n needs to be truncated. This is often not a problem because many

oscillators of practical interest are of bounded band-width: only a finite number of bns are

nonzero. Otherwise, the size of such truncation depends on the rate of decay of the bns as

|n| → ∞.

Secondly, we need to truncate the Laplace–Dirichlet expansion. This, of course, depends

on the functions whose expansions need to be computed: b̃0, bn for n 6= 0 and φ̃. In general,

the speed of convergence in (2.8), even for very smooth functions, is slow and, once truncated

for m ≤M , it might be as slow as O
(
M−1

)
even for an analytic function f [1]. Here, perhaps

paradoxically, we are saved by high oscillation. Suppose, thus, that we wish to compute (2.14)

at ∆t0 > 0. The mth term in (2.15) is then attenuated by either exp(−π2(m + 1
2 )2∆t0) or

exp(−π2m2∆t0) while the terms in (2.16) are attenuated by either [π2(m + 1
2 )2 + inω]−1 or

(π2m2 + inω)−1. Thus, for example, we need not have to take M large enough so that, for

example, |αn,m| is suitably small: it is enough that |αn,m/[π2(m+ 1
2 )2 + inω]| is small.

Another mechanism accelerating the convergence in (2.15) is that φ̃(±1) = 0. Thus, twice

integrating by parts,

cm =
1

π(m+ 1
2 )

∫ 1

−1
φ̃(x)

d sinπ(m+ 1
2 )x

dx
dx

=− 1

π(m+ 1
2 )

∫ 1

−1
φ̃′(x) sinπ(m+ 1

2 )xdx

=
1

π2(m+ 1
2 )2

∫ 1

−1
φ̃′(x)

d cosπ(m+ 1
2 )x

dx
dx

=− 1

π2(m+ 1
2 )2

∫ 1

−1
φ′′(x) cosπ(m+ 1

2 )xdx = O
(
m−3

)
,

likewise dm = O
(
m−3

)
.

Suppose that we truncate m ≤ M , |n| ≤ N and k ≤ K: note that in our numerical

experiments K = 2 already ensures good accuracy. We then need to compute

cm =

∫ 1

−1
φ̃(x) cosπ(m+ 1

2 )xdx, 0 ≤ m ≤M,

dm =

∫ 1

−1
φ̃(x) sinπmxdx, 1 ≤ m ≤M,

α(k)
n,m(t) =

∫ 1

−1
∂kt bn(x, t) cosπ(m+ 1

2 )xdx, |n| ≤ N, 0 ≤ m ≤M, 0 ≤ k ≤ K,

β(k)
n,m(t) =

∫ 1

−1
∂kt bn(x, t) sinπmxdx, |n| ≤ N, 0 ≤ m ≤M, 0 ≤ k ≤ K,

except that for n = 0 we need to replace b0 with b̃0. This can be accomplished with 2 + 2(2N +

1)(K+1) FFTs of length M : note that M is likely to be large, while both N and K are typically

small. Alternatively, we can use special quadrature methods to compute Birkhoff expansions

along the same lines as in [23].

Bearing in mind that φ̃ = φ − 1
2 (1 − x)φ(−1) − 1

2 (1 + x)φ(1) and b̃0 = b0 + 1
2 (1 − x)ν′− +

1
2 (1 + x)ν′+, we can remove the tildes from the above formulæ by using the explicit expansions

1− x
2

=

∞∑
m=0

(−1)m

π(m+ 1
2 )

cosπ(m+ 1
2 )x+

∞∑
m=1

(−1)m

πm
sinπm,
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1 + x

2
=

∞∑
m=0

(−1)m

π(m+ 1
2 )

cosπ(m+ 1
2 )x−

∞∑
m=1

(−1)m

πm
sinπm.

Finally, we need to compute integrals of the form∫ t

0

eπ
2(m+ 1

2 )
2τα0,m(τ) dτ,

∫ t

0

eπ
2m2τβ0,m(τ) dτ.

Given their non-oscillatory nature, they can be computed by any standard quadrature methods,

e.g. Gauss–Legendre quadrature in [0, t].

2.6. A worked-out example

Let us consider the equation

∂tu = ∂2xu+ e−π
2t cosπx cosωt, t ≥ 0, t ∈ [−1, 1], (2.17a)

u(x, 0) = cos 2πx, x ∈ [−1, 1], (2.17b)

u(±1, t) = e−π
2t, t ≥ 0. (2.17c)

Therefore b±1(x, t) = 1
2e−π

2t cosπx, bn ≡ 0 for |n| 6= 1, φ(x) = cos 2πx, b̃0 = π2e−π
2t and

ν±(t) = e−π
2t. Now, we need to compute cm, dm, α

(k)
n,m and β

(k)
n,m. The details of these

calculations are given in Appendix A. Substituting them into (2.15), we have

q0(x, t) =e−π
2t cosπx+ 2

∞∑
m=0

(−1)me−π
2(m+ 1

2 )
2t

[
4

π(m− 3
2 )(m+ 1

2 )(m+ 5
2 )

− 1

π(m− 1
2 )(m+ 1

2 )(m+ 3
2 )
−

2π(m+ 1
2 )e−π

2t

π4(m− 1
2 )2(m+ 3

2 )2 + ω2

]
cosπ(m+ 1

2 )x,

and∑
n 6=0

qn(x, t)einωt ∼− 2πe−π
2t cosωt

∞∑
m=0

(−1)m(m+ 1
2 )

π4(m− 1
2 )2(m+ 3

2 )2 + ω2
cosπ(m+ 1

2 )x

− 2ωe−π
2t sinωt

∞∑
m=0

(−1)m(m+ 1
2 )

π(m− 1
2 )(m+ 3

2 )
·

cosπ(m+ 1
2 )x

π4(m− 1
2 )2(m+ 3

2 )2 + ω2
.

Note that all the expansion terms in the different components of u decay at least as fast as

O
(
m−3

)
for m� 1. In particular, individual components in the oscillatory term

qo(x, t) =
∑
n 6=0

qn(x, t)einωt

decay like O
(
max{min{m−3,mω−2},min{ωm−5,mω−1}}

)
.

Fig. 2.1 depicts the non-oscillatory and oscillatory components of the solution of (2.17) for

ω = 10j , j = 1, 2, 3. Note that we have plotted q0 for t ∈ [0, 12 ] and qo just for t ∈ [0, 1
10 ], to

highlight more easily salient features of the two functions.

It is evident that the non-oscillatory component q0 exhibits very weak dependence on ω,

while the oscillatory component qo changes radically with ω. Moreover, the amplitude of qo

decays like O
(
ω−1

)
– all this is exactly in line with the prediction of our theory and with the
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Fig. 2.1. The non-oscillatory (on the left) and oscillatory components of u(x, t), the solution of (2.17),

for different values of ω.

explicit expressions above. Further note that this amplitude is roughly constant in time, while

q0 tends at an exponential speed to a limit, something which follows from the general theory

and upon which we have already commented. This is also evident in Fig. 2.2.

Another observation upon careful perusal of Fig. 2.1 is that the oscillation in qo (q0 is of

course oscillation-free) takes place in time (for sufficiently large ω), but not in space. This

should be apparent from the explicit form of the solution and makes intuitive sense because the

forcing term in (2.17) oscillates solely in time.

On the face of it, qo contributes very little to the solution u, in particular for large ω > 0:

after all, typically partial differential equations are solved numerically to fairly coarse tolerance

and an error of 10−3, say, for ω = 1000 might well be acceptable. This is a fair point and often

it is perfectly reasonable to approximate u by p0. However, one should not deduce from this

that it is a good idea to solve (2.1) by a conventional numerical method, e.g. finite difference,

finite element or spectral. Once the space derivative has been discretized, we obtain a highly

oscillatory set of ordinary differential equations. Such equations can be solved by classical

methods, no matter how ‘stable’ in a conventional sense, only with a time step of magnitude

O
(
ω−1

)
. This makes for an exceedingly expensive computation.
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Fig. 2.2. The dependence of the non-oscillatory and oscillatory components of u(x, t) on ω.

2.7. Neumann boundary conditions

If we suppose that the equation (2.1) is given with the Neumann boundary conditions

(2.4) in place of the Dirichlet conditions (2.3), the model (2.5) is still correct and equations

(2.6) and (2.7) remain valid, except that we need to swap Dirichlet for Neumann conditions

in the first. The one difference is that we no longer use Laplace–Dirichlet expansions (2.8)

and, fittingly enough, replace them by Laplace–Neumann expansions (also known as modified

Fourier expansions [21, 25]),

f(x) ∼
∞∑
m=0

fCm cosπmx+

∞∑
m=1

fSm sinπ(m− 1
2 )x,

where

fCm =

∫ 1

−1
f(x) cosπmxdx, m ∈ Z+,

fSm =

∫ 1

−1
f(x) sinπ(m− 1

2 )xdx, m ∈ N.

Note that the convergence of Laplace–Neumann expansions is faster than of their Laplace–

Dirichlet counterpart: the mth expansion term for f ∈ C1[−1, 1] decays like O
(
m−2

)
[25].

The analysis itself is virtually identical to that of the Dirichlet case, hence we will not go

into more details here.

2.8. Error Analysis of the Solution

The solution of the univariate diffusion equation (2.1) with a time oscillatory term is given

by the infinite expansion (2.14). We need to truncate this expansion in order to obtain the

asymptotic-numeric solution of the problem. To perform an error analysis of the solution, we

examine the behaviour of the eliminated part of the expansion which we shall henceforth term

the remainder. We start with examination of the q0 term which is given by (2.15). For the sake
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of simplicity, we divide the remainder part of this function into six pieces:

Rq0 = R(1) +R(2) +R(3) +R(4) +R(5) +R(6),

where

R(1) =

∞∑
m=M+1

e−π
2(m+ 1

2 )
2tcm cosπ(m+ 1

2 )x,

R(2) =

∞∑
m=M+1

(∫ t

0

e−π
2(m+ 1

2 )
2(t−τ)α0,m(τ) dτ

)
cosπ(m+ 1

2 )x,

R(3) =

M∑
m=0

∞∑
k=K+1

(−1)kαn,m(0)

[π2(m+ 1
2 )2 + inω]k+1

e−π
2(m+ 1

2 )
2t cosπ(m+ 1

2 )x

+

∞∑
m=M+1

∞∑
k=0

(−1)kαn,m(0)

[π2(m+ 1
2 )2 + inω]k+1

e−π
2(m+ 1

2 )
2t cosπ(m+ 1

2 )x,

R(4) =

∞∑
m=M+1

e−π
2m2tdm sinπmx,

R(5) =

∞∑
m=M+1

(∫ t

0

e−π
2m2(t−τ)β0,m(τ) dτ

)
sinπmx,

R(6) =

M∑
m=1

∞∑
k=K+1

(−1)kβn,m(0)

[π2m2 + inω]k+1
e−π

2m2t sinπmx

+

∞∑
m=M+1

∞∑
k=0

(−1)kβn,m(0)

[π2m2 + inω]k+1
e−π

2m2t sinπmx.

We will first take into consideration the term R(1):

|R(1)| =
∞∑

m=M+1

|e−π
2(m+ 1

2 )
2t||cm|| cosπ(m+ 1

2 )x|.

Assume that |cm| is bounded. In other words, there exists a real number A ≤ ∞ such that

|cm| ≤ A. Then, we can write the following inequalities for R(1):

∣∣R(1)
∣∣ =

∞∑
m=M+1

∣∣e−π2(m+ 1
2 )

2t
∣∣|cm|| cosπ(m+ 1

2 )x|

≤
∞∑

m=M+1

∣∣e−π2(m+ 1
2 )

2t
∣∣|cm| ≤ A ∞∑

m=M+1

∣∣e−π2(m+ 1
2 )

2t
∣∣

=A

∞∑
m=0

∣∣e−π2(m+M+ 3
2 )

2t
∣∣.

Secondly, we will find a bound for R(2). We know that

| cosπ(m+ 1
2 )x| ≤ 1, for x ∈ [−1, 1].

Assume that the kth derivative of αn,m is bounded. In other words, there exists a real number

C <∞ such that

|α(k)
n,m(t)| < C, for t ≥ 0.
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Now, the following inequalities can be written:

∣∣R(2)
∣∣ ≤ ∞∑

m=M+1

(∫ t

0

∣∣e−π2(m+ 1
2 )

2(t−τ)∣∣|α0,m(τ)|dτ
)
| cosπ(m+ 1

2 )x|

≤ C
∞∑

m=M+1

∫ t

0

∣∣e−π2(m+ 1
2 )

2(t−τ)∣∣ dτ
= C

∞∑
m=M+1

∣∣∣e−π2(m+ 1
2 )

2t 1

π2(m+ 1
2 )2

(
eπ

2(m+ 1
2 )t − 1

)∣∣∣
= C

∞∑
m=M+1

∣∣∣1− e−π
2(m+ 1

2 )
2t

π2(m+ 1
2 )2

∣∣∣
≤ C

∞∑
m=M+1

∣∣∣ 1

π2(m+ 1
2 )2

∣∣∣ = C

∞∑
m=0

∣∣∣ 1

π2(m+M + 3
2 )2

∣∣∣.
Thirdly, we will find a bound for R(3). For simplicity, we shall analyse the sums separately.

Denote the sums as R
(3)
I and R

(3)
II respectively:

R
(3)
I =

M∑
m=0

∞∑
k=K+1

(−1)kαn,m(0)

[π2(m+ 1
2 )2 + inω]k+1

e−π
2(m+ 1

2 )
2t cosπ(m+ 1

2 )x,

R
(3)
II =

∞∑
m=M+1

∞∑
k=0

(−1)kαn,m(0)

[π2(m+ 1
2 )2 + inω]k+1

e−π
2(m+ 1

2 )
2t cosπ(m+ 1

2 )x.

Consider the first expansion

∣∣R(3)
I

∣∣ ≤ M∑
m=0

∞∑
k=K+1

|(−1)k||αn,m(0)|∣∣[π2(m+ 1
2 )2 + inω]k+1

∣∣ ∣∣e−π2(m+ 1
2 )

2t
∣∣| cosπ(m+ 1

2 )x|

≤ C
M∑
m=0

∞∑
k=K+1

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

k+1
2

= C

M∑
m=0

∞∑
k=0

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

k+K+2
2

= C

M∑
m=0

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

K+2
2

∞∑
k=0

1(√
π4(m+ 1

2 )4 + n2ω2
)k

= C

M∑
m=0

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

K+2
2

1

1− 1√
π4(m+ 1

2 )
4+n2ω2

≤ C

1− 1
nω

M∑
m=0

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

K+2
2

.

Now, we will find a bound for R
(3)
II . It is possible to write the following inequalities for R

(3)
II :

∣∣R(3)
II

∣∣ ≤ ∞∑
m=M+1

∞∑
k=0

|(−1)k||αn,m(0)|∣∣[π2(m+ 1
2 )2 + inω]k+1

∣∣ ∣∣e−π2(m+ 1
2 )

2t
∣∣| cosπ(m+ 1

2 )x|
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≤ C
∞∑

m=M+1

∞∑
k=0

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

k+1
2

= C

∞∑
m=M+1

∞∑
k=0

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

k+1
2

= C

∞∑
m=M+1

|e−π2(m+ 1
2 )

2t|
[π4(m+ 1

2 )4 + n2ω2]
1
2

∞∑
k=0

1(√
π4(m+ 1

2 )4 + n2ω2
)k

= C

∞∑
m=M+1

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

1
2

1

1− 1√
π4(m+ 1

2 )
4+n2ω2

≤ C

1− 1
nω

∞∑
m=M+1

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

1
2

=
C

1− 1
nω

∞∑
m=0

∣∣e−π2(m+M+ 3
2 )

2t
∣∣

[π4(m+M + 3
2 )4 + n2ω2]

1
2

.

A similar analysis of the terms R(4), R(5) and R(6) can be done. However, details shall

be omitted here. Then, if all of the error terms are assembled, the remainder term for q0 is

obtained as follows:

|Rq0 | ≤
∞∑
m=0

{
A
[∣∣e−π2(m+M+ 3

2 )
2t +

∣∣e−π2(m+M+1)2t
∣∣]

+
C

π2

∣∣∣ 1

(m+M + 3
2 )2

∣∣∣+
D

π2

∣∣∣ 1

(m+M + 1)2

∣∣∣
+

C

1− 1
nω

[ ∣∣e−π2(m+M+ 3
2 )

2t
∣∣

[π4(m+M + 3
2 )4 + n2ω2]

1
2

]
+

D

1− 1
nω

[ ∣∣e−π2(m+M+1)2t
∣∣

[π4(m+M + 1)4 + n2ω2]
1
2

]}
+

C

1− 1
nω

M∑
m=0

∣∣e−π2(m+ 1
2 )

2t
∣∣

[π4(m+ 1
2 )4 + n2ω2]

K+2
2

+
D

1− 1
nω

M∑
m=0

∣∣e−π2(m+1)2t
∣∣

[π4(m+ 1)4 + n2ω2]
K+2

2

,

where D is the upper bound of the kth derivative of βn,m. That is, there exists a real number

D <∞ such that

|β(k)
n,m(t)| < D, for t ≥ 0.

If the same procedure is applied to the qn term, then the remainder term is

|Rqn | ≤
C

1− 1
nω

M∑
m=0

{ 1

[π4(m+ 1
2 )4 + n2ω2]

K+2
2

+
1

[π4(m+M + 3
2 )4 + n2ω2]

1
2

}
+

D

1− 1
nω

M∑
m=0

{ 1

[π4(m+ 1)4 + n2ω2]
K+2

2

+
1

π2(m+M + 1)2

}
.
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In Fig. 2.3, it is evident that the non-oscillatory component, q0, does not display any sig-

nificant dependence on ω. However, in contrast, the oscillatory component, qn, decays rapidly

with ω. The second noticeable feature from Fig. 2.3 is that both components decay rapidly

with increasing M .

Fig. 2.3. The variation of
∣∣∣Rq0

∣∣∣ and
∣∣∣Rqn

∣∣∣ with ω and M .

3. Space-Like Oscillations

3.1. The general framework

In this section we consider oscillations in space. There are similarities with the narrative of

the last section, but also crucial differences. We consider the forced diffusion equation

∂tu(x, t) = ∂2xu(x, t) +

∞∑
n=−∞

bn(x, t)einωx (3.1)

with the initial condition (2.2) and the Dirichlet boundary conditions (2.3). We present the

solution in the form

u(x, t) = p0(x, t) +
∑
n 6=0

pn(x, t, ω)einωx, t ≥ 0, x ∈ [−1, 1], (3.2)
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analogously to (2.5). Substituting it into (3.1), we have

∂tp0(x, t) +
∑
n 6=0

∂tpn(x, t, ω)einωx

= ∂2xp0(x, t) +
∑
n 6=0

[
(∂2x + 2inω∂x − n2ω2)pn(x, t, ω)

]
einωx +

∞∑
n=−∞

bn(x, t)einωx,

and separation of frequencies results in equation (2.6) for p0, while pn for n 6= 0 obeys

∂tpn(x, t, ω) =
(
∂2x + 2inω∂x − n2ω2

)
pn(x, t, ω) + bn(x, t), t ≥ 0, x ∈ [−1, 1],

pn(x, 0) ≡ 0, x ∈ [−1, 1], (3.3)

pn(±1, t) ≡ 0, t ≥ 0.

Thus we can derive p0 identically to subsection (2.2), using Laplace–Dirichlet expansions.

3.2. Computing pn

The same methodology is used as in Subsection (2.3) to compute pn. Substituting

bn(x, t) =

∞∑
m=0

αn,m(t) cosπ
(
m+ 1

2

)
x+

∞∑
m=1

βn,m(t) sinπmx, n 6= 0,

pn(x, t) =

∞∑
m=0

ρn,m(t) cosπ
(
m+ 1

2

)
x+

∞∑
m=1

σn,m(t) sinπmx,

into (3.3), we obtain the terms

−2iπnω

∞∑
m=0

(
m+ 1

2

)
ρn,m(t) sinπ

(
m+ 1

2

)
x, and 2πinω

∞∑
m=1

σn,m(t) cosπmx.

Although in principle we can expand sinπ
(
m+ 1

2

)
x into Laplace–Dirichlet series in sinπkx,

k ∈ N and cosπmx into a linear combination of cosπ
(
k + 1

2

)
, k ∈ Z+, this leads to messy

expressions and the equations for individual ρn,ms and σn,ms are no longer decoupled. Instead,

we let

b̃n(x, t) = einωxbn(x, t), n 6= 0,

and reformulate (3.3) as

∂tpn(x, t, ω)=
(
∂2x + 2inω∂x − n2ω2

)
pn(x, t, ω) + e−inωxb̃n(x, t), t ≥ 0, x ∈ [−1, 1],

pn(x, 0) ≡ 0, x ∈ [−1, 1], (3.4)

pn(±1, t) ≡ 0, t ≥ 0.

Let

b̃n(x, t) =

∞∑
m=0

α̃n,m(t) cosπ
(
m+ 1

2

)
x+

∞∑
m=1

β̃n,m(t) sinπmx,

where

α̃n,m(t) =

∫ 1

−1
b̃n(x, t) cosπ

(
m+ 1

2

)
xdx,

β̃n,m(t) =

∫ 1

−1
b̃n(x, t) sinπmxdx.
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Then direct differentiation confirms that the Laplace–Dirichlet series

pn(x, t) = e−inωx

{ ∞∑
m=0

e
−π2

(
m+

1
2

)2
t
∫ t

0

e
π2
(
m+

1
2

)2
τ
α̃n,m(τ)dτ cosπ

(
m+ 1

2

)
x

+

∞∑
m=1

e−π
2m2t

∫ t

0

eπ
2m2τ β̃n,m(τ)dτ sinπmx

}
(3.5)

is the solution of (3.4). (3.5) is in a form amenable to neither analysis nor computation, because

of the presence of the highly oscillatory integrals α̃n,m and β̃n,m, and further work is required.

The asymptotic expansion can be obtained, but it is encumbered by several disadvantages. In

this subsection we propose the alternative of a Filon-type method [23, 24]. Within the context

of the challenge in hand, we choose s ∈ N, ν ∈ Z+ and nodes c1 < c2 < · · · < cν in (−1, 1) such

that cj + cν+1−j = 0. Let P : Cs[−1, 1] → Pν+2s−1 take each f into its Hermite interpolation

polynomial,

dP[f ](−1)

dxk
= f (k)(−1),

dP[f ](1)

dxk
= f (k)(1), k = 0, 1, · · · , s− 1,

P[f ](cj) = f(cj), j = 1, 2, · · · , ν.

Then ∫ 1

−1
f(x)eηxdx ≈ Fη[f ] =

∫ 1

−1
P[f ](x)eηxdx. (3.6)

It follows from (2.11) that

Fη[f ] = eη
s∑

k=0

(−1)k

ηk+1

dkP[f ](1)

dxk
− e−η

s∑
k=0

(−1)k

ηk+1

dkP[f ](−1)

dxk
. (3.7)

Using the same method of proof as in [23] , we can show that for any η ∈ C, Re η ≤ 0, it is

true that ∫ 1

−1
f(x)eηxdx ∼ Fη[f ] +O(η−s−2), |η| � 1. (3.8)

However, unlike the asymptotic expansion, the Filon-type method produces a quality numerical

solution also for small η : as η → 0, it reduces to classical interpolatory quadrature of Birkhoff–

Hermite type at the requisite nodes (both the cjs and ±1, the latter of multiplicity s). In other

words, (3.6) is uniformly good for all Re η ≥ 0.

The choice of the internal nodes c1, · · · , cν is crucial to ensure that the method performs

well for small η. Clearly, in that case we should maximise classical quadrature order, and this

occurs once the cis are the zeros of the Jacobi polynomial P
(s,s)
ν [23]. Note that such zeros are

indeed symmetric with respect to the origin.

We approximate

α̃n,m ≈ 1
2

{
F
nω+π

(
m+

1
2

)[bn] + F
nω−π

(
m+

1
2

)[bn]

}
, n 6= 0, m ∈ Z+, (3.9a)

β̃n,m ≈ 1
2i {Fnω+πm[bn]−Fnω−πm[bn]} , n 6= 0, m ∈ N. (3.9b)
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It is helpful to represent the Filon-type method (3.6) explicitly as a linear combination of

function values and derivatives, rather than in the form (3.7). Thus, let l1, · · · , lν , p0, · · · , ps−1 ∈
Pµ+2s+1 be such that

lk(ci) =

{
1, i = k,

0, i 6= k,
, i = 1, · · · , ν,

l
(j)
k (±1) = 0, j = 0, · · · , s− 1,

pj(ci) = 0, i = 1, · · · , ν,

p
(k)
j (−1) = 0, p

(k)
j (1) =

{
1, k = j,

0, k 6= j,
k = 0, · · · , s− 1.

(Note that lν+1−j(x) = lj(−x).) Then

P[f ](x) =

ν∑
k=1

lk(x)f(ck) +

s−1∑
j=0

[
pj(x)f (j)(1) + (−1)jpj(−x)f (j)(−1)

]
. (3.10)

Therefore,

Fη[f ] =

ν∑
k=1

dk(η)f(ck) +

s−1∑
j=0

[
ej(η)f (j)(1) + (−1)jej(−η)f (j)(−1)

]
, (3.11)

where

dk(η) =

∫ 1

−1
lk(x)eηxdx, k = 1, · · · , ν, (3.12a)

ej(η) =

∫ 1

−1
pj(x)eηxdx, j = 0, · · · , s− 1. (3.12b)

We compute the variable weights dk and ej explicitly and use (3.12) to compute the α̃n,ms and

the β̃n,ms. Note that

dk(η) = eηd+k (η)− e−ηd−k (η), (3.13a)

ej(η) = eηe+j (η)− e−ηe−j (η), (3.13b)

where d±k and e±j are polynomials in η−1,

d±k (η) =

2s+ν−1∑
i=0

(−1)i

ηi+1
l
(i)
k (±1), e±j (η) =

2s+ν−1∑
i=0

(−1)i

ηi+1
p
(i)
k (±1). (3.14)

If we suppose that equation (3.1) is given with Neumann boundary conditions, we use

Laplace–Neumann expansions in order to solve these equations. We make an identical analysis

to that of the Dirichlet case and obtain the solution of (3.1).

3.3. A worked-out example for space-like oscillations

In this section, we present a straightforward example that illustrates the merits of the

method introduced above. It considers a forcing term that is oscillatory in space.

∂tu = ∂2xu+ b sinωx, (3.15)
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with the initial and boundary conditions

u(x, 0) = φ(x) = cosωx,

u(−1, t) = ν−(t) = e−ω
2t cosω − b

ω2

(
1− e−ω

2t
)

sinω,

u(1, t) = ν+(t) = e−ω
2t cosω +

b

ω2

(
1− e−ω

2t
)

sinω.

Its solution takes the form

u(x, t) = p0(x, t) +
[
e−iωxp−1(x, t, ω) + eiωxp1(x, t, ω)

]
.

To determine p0(x, t), the non-oscillatory differential equation (2.6) is considered with the initial

condition

p0(x, 0) = φ(x) = cosωx, x ∈ [−1, 1],

and the Dirichlet boundary conditions

p0(−1, t) = ν−(t) = e−ω
2t cosω − b

ω2

(
1− e−ω

2t
)

sinω,

p0(1, t) = ν+(t) = e−ω
2t cosω +

b

ω2

(
1− e−ω

2t
)

sinω, t ≥ 0.

The function

p̃0(x, t) = p0(x, t)− e−ω
2t cosω − x b

ω2

(
1− e−ω

2t
)

sinω,

obeys the partial difference equation.

∂tp̃0(x, t) = ∂2xp̃0(x, t) + ω2e−ω
2t cosω − xbe−ω

2t sinω,

while the initial condition and the boundary conditions take the form

p̃0(x, 0) = φ(x)− cosω = cosωx− cosω, x ∈ [−1, 1],

p̃0(±1, t) = 0, t ≥ 0.

This yields φ̃ and b̃0, namely

φ̃(x) = cosωx− cosω,

b̃0(x, t) = ω2e−ω
2t cosω − xbe−ω

2t sinω.

These functions are used to compute α0,m, β0,m and cm, dm, and this results in ρ0,m and σ0,m,

ρ0,m(t) = e
−π2

(
m+

1
2

)2
t
cm +

4(−1)mω2 cosω

π(2m+ 1)
(
π2
(
m+ 1

2

)2 − ω2
) [e−ω2t − e−π

2(m+ 1
2 )

2
t
]
,

σ0,m(t) = e−π
2m2tdm +

2b(−1)mπm sinω

π2m (π2m2 − ω2)

(
e−ω

2t − e−π
2m2t

)
.

In the next step we compute p−1 and p1 by solving the differential equations,

∂tp−1 =
(
∂2x − 2iω∂x − ω2

)
p−1 + eiωxb̃−1,

∂tp1 =
(
∂2x + 2iω∂x − ω2

)
p1 + e−iωxb̃1,
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Fig. 3.1. The non-oscillatory (on the left) and oscillatory components of u(x, t), the solution of (3.15),

for different values of ω.

where b̃−1 and b̃1 are given by

b̃−1(x, t) =
b

2
i, b̃1(x, t) = − b

2
i.

The initial and boundary conditions are

p±1(x, 0) ≡ 0, x ∈ [−1, 1], p±1(±1, t) ≡ 0, t ≥ 0.

Using (3.5), we thus obtain

p−1(x, t) = eiωx

[ ∞∑
m=0

e−π
2(m+

1
2 )

2t

∫ t

0

eπ
2(m+

1
2 )

2τ α̃−1,m(τ)dτ cosπ(m+ 1
2 )x

+

∞∑
m=1

e−π
2m2t

∫ t

0

eπ
2m2τ β̃−1,m(τ)dτ sinπmx

]
,

p1(x, t) = e−iωx

[ ∞∑
m=0

e−π
2(m+

1
2 )

2t

∫ t

0

eπ
2(m+

1
2 )

2τ α̃1,m(τ)dτ cosπ(m+ 1
2 )x

+

∞∑
m=0

e−π
2m2t

∫ t

0

eπ
2m2τ β̃1,m(τ)dτ sinπmx

]
,

where α̃−1,m, α̃1,m, β̃−1,m and β̃1,m can be evaluated either analytically or numerically, using

(3.9).
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Fig. 3.2. The number of significant digits of the L∞ error (for x ∈ [−1, 1] and t ∈ [0, 1]) for different

values of ω.

In Fig. 3.2, we display the number of significant digits attained by our method, implemented

with b = 1, comparing it with the pdepe function of Matlab (which uses a second-order finite-

difference spatial discretization, followed by an ODE solver). The latter is executed with the

tolerance set at 10−10. Note that already for r = 2 the error committed with the new method

is significantly less than that of the pdepe subroutine as frequency increases. Needless to say,

the execution time with our method is significantly smaller than with pdepe.

4. Conclusion

This is an initial investigation into a new subject matter, in a nature of a feasibility study.

Practical applications to specific problems would require much further work, this is typical

to most applications of numerical PDEs. For example, the application which motivated us

is an excitation of an antenna by highly oscillatory current. However, realistic modelling of

this phenomenon would require the presence of ODE, PDE and indeed DAE components. We

believe that at the first instance each of these individual problems must be addressed separately

and, as evident in the present paper, this is neither trivial nor brief.
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Appendix A

We present the calculations of cm, dm, α
(k)
n,m and β

(k)
n,m as referred to in Section 2.6.

cm =

∫ 1

−1
(cos 2πx− 1) cosπ(m+ 1

2 )x dx =
8(−1)m

π(m− 3
2 )(m+ 1

2 )(m+ 5
2 )
,

dm =

∫ 1

−1
(cos 2πx− 1) sinπmxdx = 0,
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α0,m = π2e−π
2t

∫ 1

−1
cosπ(m+ 1

2 )x dx =
2(−1)mπe−π

2t

(m+ 1
2 )

,

β0,m = π2e−π
2t

∫ 1

−1
sinmπxdx ≡ 0,

α
(k)
±1,m(t) =

(−π2)k

2
e−π

2t

∫ 1

−1
cosπx cosπ(m+ 1

2 )xdx =
(−1)k+m+1π2ke−π

2t(m+ 1
2 )

π(m− 1
2 )(m+ 3

2 )
,

β
(k)
±1,m(t) =

(−π2)k

2
e−π

2t

∫ 1

−1
cosπx sinπmxdx ≡ 0.

Trivially, αn,m, βn,m ≡ 0 for |n| ≥ 2. Finally,

∫ t

0

eπ
2(m+ 1

2 )
2τα0,m(τ) dτ =

2(−1)m

π(m− 1
2 )(m+ 1

2 )(m+ 3
2 )

[
eπ

2(m− 1
2 )(m+ 3

2 )t − 1
]
,∫ t

0

eπ
2m2τβ0,m(τ) dτ ≡ 0.

Substituting into (2.15) and summing geometric series, we thus have

q0(x, t) ∼ e−π
2t +

∞∑
m=0

e−π
2(m+ 1

2 )
2t

{
8(−1)m

π(m− 3
2 )(m+ 1

2 )(m+ 5
2 )

+
2(−1)m

π3(m− 1
2 )(m+ 1

2 )(m+ 3
2 )

[
eπ

2(m− 1
2 )(m+ 3

2 )t − 1
]

−
(−1)m+1(m+ 1

2 )e−π
2t

π(m− 1
2 )(m+ 3

2 )

∞∑
k=0

π2k

[π2(m+ 1
2 )2 + iω]k+1

−
(−1)m+1(m+ 1

2 )e−π
2t

π(m− 1
2 )(m+ 3

2 )

∞∑
k=0

π2k

[π2(m+ 1
2 )2 − iω]k+1

}
cosπ(m+ 1

2 )x

= e−π
2t

[
1 +

2

π

∞∑
m=0

(−1)m

(m− 1
2 )(m+ 1

2 )(m+ 3
2 )

cosπ(m+ 1
2 )x

]

+

∞∑
m=0

(−1)me−π
2(m+ 1

2 )
2t

[
8

π(m− 3
2 )(m+ 1

2 )(m+ 5
2 )

− 2

π(m− 1
2 )(m+ 1

2 )(m+ 3
2 )

+
(m+ 1

2 )e−π
2t

π(m− 1
2 )(m+ 3

2 )
· 1

π2(m− 1
2 )(m+ 3

2 ) + iω

+
(m+ 1

2 )e−π
2t

π(m− 1
2 )(m+ 3

2 )
· 1

π2(m− 1
2 )(m+ 3

2 )− iω

]
cosπ(m+ 1

2 )x

= e−π
2t

[
1 +

2

π

∞∑
m=0

(−1)m

(m− 1
2 )(m+ 1

2 )(m+ 3
2 )

cosπ(m+ 1
2 )x

]

+ 2

∞∑
m=0

(−1)me−π
2(m+ 1

2 )
2t

[
4

π(m− 3
2 )(m+ 1

2 )(m+ 5
2 )

− 1

π(m− 1
2 )(m+ 1

2 )(m+ 3
2 )
−

2π(m+ 1
2 )e−π

2t

π4(m− 1
2 )2(m+ 3

2 )2 + ω2

]
cosπ(m+ 1

2 )x.
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This can be further simplified, because

∞∑
m=0

(−1)m

(m− 1
2 )(m+ 1

2 )(m+ 3
2 )

cosπ(m+ 1
2 )x = −π cos2

πx

2
,

therefore the first set of square brackets can be replaced by e−π
2t cosπx. Likewise,

q±1(x, t) ∼ e−π
2t
∞∑
m=0

(−1)m+1(m+ 1
2 )

π(m− 1
2 )(m+ 3

2 )

∞∑
k=0

1

[π2(m+ 1
2 )2 ± iω]k+1

= −e−π
2t
∞∑
m=0

(−1)m(m+ 1
2 )

π(m− 1
2 )(m+ 3

2 )
·

cosπ(m+ 1
2 )x

π2(m− 1
2 )(m+ 3

2 )± iω
,

therefore

∑
n 6=0

qn(x, t)einωt ∼ −e−π
2t
∞∑
m=0

(−1)m(m+ 1
2 )

π(m− 1
2 )(m+ 3

2 )

[
eiωt

π2(m− 1
2 )(m+ 3

2 ) + iω

+
e−iωt

π2(m− 1
2 )(m+ 3

2 )− iω

]
cosπ(m+ 1

2 )x

= −2πe−π
2t cosωt

∞∑
m=0

(−1)m(m+ 1
2 )

π4(m− 1
2 )2(m+ 3

2 )2 + ω2
cosπ(m+ 1

2 )x

− 2ωe−π
2t sinωt

∞∑
m=0

(−1)m(m+ 1
2 )

π(m− 1
2 )(m+ 3

2 )
·

cosπ(m+ 1
2 )x

π4(m− 1
2 )2(m+ 3

2 )2 + ω2
.
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