
Journal of Computational Mathematics

Vol.31, No.5, 2013, 522–531.

http://www.global-sci.org/jcm

doi:10.4208/jcm.1307-m4063

ESTIMATIONS OF THE CONSTANTS IN INVERSE
INEQUALITIES FOR FINITE ELEMENT FUNCTIONS*

Shaochun Chen and Jikun Zhao

Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China

Email: shchchen@zzu.edu.cn zjk021466@163.com

Abstract

In this paper, we estimate the constants in the inverse inequalities for the finite ele-

ment functions. Furthermore, we obtain the least upper bounds of the constants in inverse

inequalities for the low-order finite element functions. Such explicit estimates of the con-

stants can be used as computable error bounds for the finite element method.
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1. Introduction

As a very effective numerical method of partial differential equations, the finite element

method (FEM) is widely applied to the engineering and scientific computation. In the process

of analysis and solving by the finite element method, the inverse inequalities are frequently

used to bound the high-order (semi-)norms in terms of the low-order ones for the finite element

functions, cf. [1, 3]. However, it is well known to prove the inverse inequalities by functional

analysis [3], which can not explicitly give the constants on the right and brings troubles into

practical error analysis and numerical computation such as a posteriori error estimation and

adaptive refinement algorithms. Therefore, for both error analysis and numerical computation,

it is very significant to estimate the constants in the inverse inequalities.

We consider the following inverse inequality

|v|1,Ω ≤ Ch−1‖v‖Ω, (1.1)

where h is the diameter of the domain Ω and v is a finite element function. The other kinds of

inverse inequalities are considered in [4, 5, 7, 10].

For the 1-D and 2-D cases, the constant C in (1.1) is given for the linear finite element

in [2]. For any dimension n and order k, The estimation on the constant C in (1.1) is translated

into a conditional extremum problem in [9]. However, it needs to solve a system of nonlinear

equations with the help of the software Matlab, which is not suitable for theoretic analysis.

In this paper, we explicitly give the inverse inequalities for the finite element functions by

different methods. In section 2, due to the recursion relation and orthogonality of Legendre

polynomials [8], the constant C in (1.1) is estimated for the 1-D case, which may be extended

to general rectangular domains. Especially, we obtained the optimal constants for k = 1, 2.

In section 3, the constant C in (1.1) is estimated for the reference triangular and tetrahedron

finite elements, respectively, which can be ordinarily extended to general bounded domains.
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Furthermore, we obtain the least upper bound of the constant for the linear triangular and

tetrahedron finite elements, respectively. In addition, we get an explicit relation between the

inverse inequality (1.1) and the geometric characters of the general triangle T . Finally, from

the inverse inequality (1.1) we explicitly obtain general inverse inequalities as follows

|v|m,Ω ≤ Chl−m|v|l,Ω, (1.2)

where |v|m,Ω =
(

∑

|α|=m

|α|!
α! ‖Dαv‖2Ω

)
1

2 , α = (α1, α2, . . . , αn), |α| = α1+α2+ . . .+αn and m ≥ 1.

2. Inverse Inequalities for the 1-D Case

In this paper, we denote a polynomial space of order ≤ k on Ω by Pk(Ω). Let Lk be the

k-th Legendre polynomial, that is,

Li(x) =
1

2ii!

di

dxi
(x2 − 1)i, i = 0, 1, . . . , k, (2.1)

with the following orthogonality

(Li, Lj) ,

∫ 1

−1

Li(x)Lj(x)dx =

{

0, i 6= j,
2

2i+1 , i = j.
(2.2)

For 1 ≤ i ≤ k, according to (2.1) we have the following recursion formula

L′
i(x) =

1

2ii!

di

dxi

(

2ix(x2 − 1)i−1
)

=
1

2(i−1)(i− 1)!

di−1

dxi−1

(

(x2 − 1)i−1 + 2(i− 1)x2(x2 − 1)i−2
)

=
1

2(i−1)(i− 1)!

di−1

dxi−1

(

(2i− 1)(x2 − 1)i−1 + 2(i− 1)(x2 − 1)i−2
)

= (2i− 1)Li−1(x) + L′
i−2(x).

Then there holds

L′
i(x) =

i−1
∑

j=0

dijLj(x) =
k−1
∑

j=0

dijLj(x), (2.3)

where

dij =

{

2j + 1, if i− j is odd and positive,

0, otherwise.
(2.4)

From (2.3) and (2.4), we have the following orthogonality relation

(L′
2i, L

′
2j−1) = 0. (2.5)

For any p(x) ∈ Pk(−1, 1), there exist k + 1 real numbers c0, c1, . . . , ck such that

p(x) =
k

∑

i=0

ciLi(x), (2.6)

‖p‖2L2(−1,1) =
(

k
∑

i=0

ciLi,

k
∑

i=0

ciLi

)

=

k
∑

i=0

c2i (Li, Li) =

k
∑

i=0

2c2i
2i+ 1

. (2.7)
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Since

p′ =
k

∑

i=1

ciL
′
i =

⌊ k
2
⌋

∑

i=1

c2iL
′
2i +

⌈ k
2
⌉

∑

i=1

c2i−1L
′
2i−1,

where ⌊k
2 ⌋ denotes the biggest integer smaller than or equal to k

2 and ⌈k
2⌉ denotes the smallest

integer greater than or equal to k
2 , according to (2.3)-(2.5) and Hölder inequality we have

‖p′‖2L2(−1,1) =
(

⌊ k
2
⌋

∑

i=1

c2iL
′
2i +

⌈ k
2
⌉

∑

i=1

c2i−1L
′
2i−1,

⌊ k
2
⌋

∑

j=1

c2jL
′
2j +

⌈ k
2
⌉

∑

j=1

c2j−1L
′
2j−1

)

=
(

⌊ k
2
⌋

∑

i=1

c2iL
′
2i,

⌊ k
2
⌋

∑

j=1

c2jL
′
2j

)

+
(

⌈ k
2
⌉

∑

i=1

c2i−1L
′
2i−1,

⌈ k
2
⌉

∑

j=1

c2j−1L
′
2j−1

)

=

k−1
∑

r=0

(

⌊ k
2
⌋

∑

i=1

c2id2i,r

)2

(Lr, Lr) +

k−1
∑

r=0

(

⌈ k
2
⌉

∑

i=1

c2i−1d2i−1,r

)2

(Lr, Lr)

≤
k−1
∑

r=0

⌊ k
2
⌋

∑

i=1

d22i,r

(L2i, L2i)
(Lr, Lr) ·

⌊ k
2
⌋

∑

i=1

c22i(L2i, L2i)

+

k−1
∑

r=0

⌈ k
2
⌉

∑

i=1

d22i−1,r

(L2i−1, L2i−1)
(Lr, Lr) ·

⌈ k
2
⌉

∑

i=1

c22i−1(L2i−1, L2i−1)

=

⌊ k
2
⌋

∑

i=1

(4i+ 1)

k−1
∑

r=0

d2i,r ·
⌊ k

2
⌋

∑

i=1

c22i(L2i, L2i) +

⌈ k
2
⌉

∑

i=1

(4i− 1)

k−1
∑

r=0

d2i−1,r ·
⌈ k

2
⌉

∑

i=1

c22i−1(L2i−1, L2i−1)

=

⌊ k
2
⌋

∑

i=1

(4i+ 1)(2i2 + i) ·
⌊ k

2
⌋

∑

i=1

c22i(L2i, L2i) +

⌈ k
2
⌉

∑

i=1

(4i− 1)(2i2 − i) ·
⌈ k

2
⌉

∑

i=1

c22i−1(L2i−1, L2i−1).

In the last term above, we have used the following two equalities

k−1
∑

r=0

d2i,r =

2i−1
∑

r=0

d2i,r = 2i2 + i,

k−1
∑

r=0

d2i−1,r =

2i−2
∑

r=0

d2i−1,r = 2i2 − i,

which follow from (2.4). Define

Ak = max

{ ⌊ k
2
⌋

∑

i=1

(4i+ 1)(2i2 + i),

⌈ k
2
⌉

∑

i=1

(4i− 1)(2i2 − i)

}

. (2.8)

Then we have

‖p′‖2L2(−1,1) ≤ Ak

( ⌊ k
2
⌋

∑

i=1

c22i(L2i, L2i) +

⌈ k
2
⌉

∑

i=1

c22i−1(L2i−1, L2i−1)

)

= Ak

k
∑

i=0

c2i (Li, Li) = Ak‖p‖2L2(−1,1).

It follows from (2.1)-(2.2) and (2.8) that

‖L′
1‖2L2(−1,1) = A1‖L1‖2L2(−1,1), ‖L′

2‖2L2(−1,1) = A2‖L2‖2L2(−1,1), (2.9)
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where A1 = 3 and A2 = 15, that is to say, the constant Ak is optimal for k = 1, 2.

Therefore, we establish the following lemma.

Lemma 2.1. For any p ∈ Pk(−1, 1), there holds

‖p′‖L2(−1,1) ≤
√

Ak‖p‖L2(−1,1), (2.10)

where Ak is given in (2.8). Furthermore, the constant Ak is optimal for k = 1, 2.

Since any open, non-void interval (a, b) may be transformed affinely to (−1, 1) via x →
−1 + 2x−a

b−a
, from Lemma 2.1 we obtain

Theorem 2.1. For any p ∈ Pk(a, b), there holds

‖p′‖L2(a,b) ≤
C1,k

h
‖p‖L2(a,b), (2.11)

where h = b− a, C1,k = 2
√
Ak and Ak is given in (2.8). Furthermore, the constant in (2.11) is

optimal for k = 1, 2.

Remark 2.1. According to Theorem 2.1, for n = k = 1 we have A1 = 3 and C1,1 = 2
√
3 in

(1.1), which is the same as that in [2].

Remark 2.2. By using Fubini’s theorem and Theorem 2.1, we can easily obtain the inverse

inequalities on rectangular domains as follows.

Theorem 2.2. Assume K = (a1, b1)×(a2, b2)×. . .×(an, bn) and Qk(K) denotes the space of all

polynomials that are of degree ≤ k with respect to each variable xi. Then for any v ∈ Qk(K),we

have

|v|1,K ≤ C1,k

hK

‖v‖K , (2.12)

and especially the anisotropic inverse inequalities

‖ ∂v

∂xi

‖0,K ≤ C1,K

hi

‖v‖K , 1 ≤ i ≤ n, (2.13)

where hK = (
∑n

i=1
1

(bi−ai)2
)−

1

2 , hi = bi − ai, C1,k = 2
√
Ak and Ak is given in (2.8). Further-

more, the constants in (2.12)-(2.13) are optimal for k = 1, 2.

3. Inverse Inequalities on the Simplex

The orthogonal polynomials on the triangle or tetrahedron can not be easily be expressed

like that for 1-D case. To this end, we will introduce another method in the section to avoid

the orthogonalization.

3.1. Inverse inequalities on the triangle

Let h, a and θ be positive constants such that

h > 0, 0 < a ≤ 1,
π

3
≤ cos−1 a

2
≤ θ < π. (3.1)
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We define the triangle Ta,θ,h by△OAB with three verticesO(0, 0), A(h, 0) andB(ah cos θ, ah sin θ)

as that in [6]. From (3.1), ∠BOA = θ is the maximum interior angle and AB the edge of max-

imum length, i.e., |AB| ≥ h ≥ ah, so that h = |OA| here denotes the medium edge length,

although the notation h is often used as the largest edge length. Since we can configure any

triangle T as Ta,θ,h by an appropriate congruent transformation in R2, then we regard Ta,θ,h

as a general triangle T . We will use abbreviated notations T = Ta,θ,h and T̂ = T1,π
2
,1, as

illustrated in Fig. 3.1.

Fig. 3.1. Notations for triangles: T = Ta,θ,h, T̂ = T1,π
2
,1.

Let N = dimPk(T̂ ) and {p̂1, p̂2, . . . , p̂N} be a given basis of Pk(T̂ ) such that ‖p̂i‖T̂ = 1,

there must exist the corresponding basis {ϕ̂1, ϕ̂2, . . . , ϕ̂N} in Pk(T̂ ) such that

v̂ =

N
∑

i=1

(

∫

T̂

v̂p̂idx̂
)

ϕ̂i, ∀v̂ ∈ Pk(T̂ ), (3.2)

where
∫

T̂
p̂iϕ̂jdx̂ = δij . According to Minkowski’s inequality and Hölder’s inequality, we have

‖v̂x̂j
‖
T̂
≤

N
∑

i=1

∣

∣

∣

∣

∫

T̂

v̂p̂idx̂

∣

∣

∣

∣

·
∥

∥

∥

∥

∂ϕ̂i

∂x̂j

∥

∥

∥

∥

T̂

≤
( N
∑

i=1

‖∂ϕ̂i

∂x̂j

‖
T̂

)

‖v̂‖
T̂
, j = 1, 2. (3.3)

Define

B̂k =

2
∑

j=1

( N
∑

i=1

‖∂ϕ̂i

∂x̂j

‖
T̂

)2

. (3.4)

Then there holds

|v̂|2
1,T̂

≤ B̂k‖v̂‖2T̂ . (3.5)

This establishes the following lemma.

Lemma 3.1.

|v̂|1,T̂ ≤
√

B̂k‖v̂‖T̂ , ∀v̂ ∈ Pk(T̂ ), (3.6)

where B̂k is given in (3.4).

The inverse inequality (3.6) is a general one. Now for practical application we give sharper

estimates of the constants for k = 1, 2, respectively.
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To this end, let p̂1 =
√
2, p̂2 =

√
12(λ̂2−λ̂3), p̂3 = 2(3λ̂1−1), p̂4 =

√
6(1−8λ̂1+10λ̂2

1), p̂5 =√
18(4λ̂2 − 4λ̂3 − 5λ̂2

2 + 5λ̂2
3) and p̂6 =

√
45(λ̂2

2 − 4λ̂2λ̂3 + λ̂2
3). Here λ̂1 = 1− x̂1 − x̂2, λ̂2 = x̂1

and λ̂3 = x̂2 are the area coordinates of T̂ .

By simple computations we have
∫

T̂

p̂ip̂jdx̂ = δij , 1 ≤ i, j ≤ 6,

which means that {p̂1, p̂2, p̂3} and {p̂1, p̂2, . . . , p̂6} are the L2-orthogonal bases of P1(T̂ ) and

P2(T̂ ), respectively.

(i) For any v̂ ∈ P1(T̂ ), we have

v̂ = a1p̂1 + a2p̂2 + a2p̂3, ‖v̂‖2
T̂
= a21 + a22 + a23,

where ai =
∫

T̂
v̂p̂idx̂ for i = 1, 2, 3. Then there holds

|v̂|2
1,T̂

=

∫

T̂

(

( ∂v̂

∂x̂1

)2

+
( ∂v̂

∂x̂2

)2
)

dx̂

=
(√

12a2 − 6a3)
2 + (−

√
12a2 − 6a3)

2
∣

∣

∣
T̂ |

= 12a22 + 36a23 ≤ 36(a21 + a22 + a23) = 36‖v̂‖2
T̂
.

Hence for k = 1 we can set B̂1 = 36 in (3.6) that is

|v̂|1,T̂ ≤ 6‖v̂‖
T̂
, ∀v̂ ∈ P1(T̂ ). (3.7)

Furthermore, the above constant is optimal, since |p̂3|1,T̂ = 6‖p̂3‖T̂ .

Remark 3.1. In [2, 9] the following inverse inequality is given

|v̂|1,T̂ ≤ 6
√
2‖v̂‖

T̂
, ∀v̂ ∈ P1(T̂ ).

Therefore, we give the better result on the constant for k = 1.

(ii) For any v̂ ∈ P2(T̂ ), similarly we have

v̂ =

6
∑

i=1

aip̂i, ‖v̂‖2
T̂
=

6
∑

i=1

a2i ,

where ai =
∫

T̂
v̂p̂idx̂ for i = 1, 2, . . . , 6. Then there holds

|v̂|2
1,T̂

=

6
∑

i=1

6
∑

j=1

aiajdij , (3.8)

where dij =
∫

T̂
( ∂p̂i

∂x̂1

∂p̂j

∂x̂1

+ ∂p̂i

∂x̂2

∂p̂j

∂x̂2

)dx̂. By some computations we have

d23 = d24 = d26 = d35 = d45 = d56 = 0,

d22 = 12, d33 = 36, d44 = 144, d55 = 108, d66 = 90,

d25 = 4
√
6, d34 = −8

√
6, d36 = 12

√
5, d46 = −6

√
30,

a2a5d25 ≤ 24a22 + a25, a3a4d36 ≤ 84a23 +
8

7
a24,

a3a6d36 ≤ 30a23 + 6a26, a4a6d46 ≤ 5a24 + 54a26.



528 S.C. CHEN AND J.K. ZHAO

Substituting the above results into (3.8), we get

|v̂|2
1,T̂

≤ 36a22 + 150a23 +
(

150 +
1

7

)

a24 + 109a25 + 150a26 ≤
(

150 +
1

7

)

‖v̂‖2
T̂
.

Hence for k = 2 we can set B̂2 = 150 + 1
7 in (3.6). That is

|v̂|1,T̂ ≤
√

150 +
1

7
‖v̂‖

T̂
, ∀v̂ ∈ P2(T̂ ). (3.9)

Remark 3.2. In [9] the following inverse inequality is given

|v̂|1,T̂ ≤ 17.7246‖v̂‖
T̂
, ∀v̂ ∈ P2(T̂ ).

Therefore, we also give the better result on the constant for k = 2.

Next we start to explicitly establish inverse inequalities on the general triangle T that is

Ta,θ,h. Let us introduce the following simple affine transformation F : T̂ → Ta,θ,h by

x = F (x̂) = Ba,θ,hx̂, (3.10)

where

x =

(

x1

x2

)

, x̂ =

(

x̂1

x̂2

)

, Ba,θ,h =

(

h ah cos θ

0 ah sin θ

)

.

Theorem 3.1. The following estimate holds:

|v|1,T ≤ C2,k

h
‖v‖T , ∀v ∈ Pk(T ), (3.11)

where C2,k =

√
(1+| cos θ|)B̂k

a sin θ
and B̂k is given in (3.4).

Proof. Consider the inverse affine transformation F−1 : Ta,θ,h → T̂ as follows

x̂ = F−1(x) = B−1
a,θ,hx,

where

B−1
a,θ,h =

1

ah sin θ

(

a sin θ −a cos θ

0 1

)

.

By simple calculations, we have for v̂ = v ◦ F under the above transformation.

2
∑

i=1

( ∂v

∂xi

)2

=
1

h2 sin2 θ

(

( ∂v̂

∂x̂1

)2

− 2 cos θ

a

∂v̂

∂x̂1
· ∂v̂

∂x̂2
+

1

a2

( ∂v̂

∂x̂2

)2
)

≤ 1 + | cos θ|
a2h2 sin2 θ

2
∑

i=1

( ∂v̂

∂x̂i

)2

.

According to Lemma 3.1, we have

|v|21,T ≤ 1 + | cos θ|
a2h2 sin2 θ

| detBa,θ,h||v̂|21,T̂

≤ 1 + | cos θ|
a2h2 sin2 θ

B̂k| detBa,θ,h|‖v̂‖2T̂

=
1 + | cos θ|
a2h2 sin2 θ

B̂k‖v‖2T .

Let C2,k =

√
(1+| cos θ|)B̂k

a sin θ
and the proof is complete. �
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3.2. Inverse inequalities on the tetrahedron

Let T̂ be the reference tetrahedron with vertices b̂0(0, 0, 0), b̂1(1, 0, 0), b̂2(0, 1, 0) and b̂3(0, 0, 1),

then λ̂0 = 1 − x̂1 − x̂2 − x̂3 and λ̂i = x̂i (i = 1, 2, 3) are the volume coordinates of T̂ . Similar

to the triangular case, let N = dimPk(T̂ ) and {p̂1, p̂2, . . . , p̂N} be a given basis of Pk(T̂ ) such

that ‖p̂i‖T̂ = 1, there must exist the corresponding basis {ϕ̂1, ϕ̂2, . . . , ϕ̂N} in Pk(T̂ ) such that

v̂ =

N
∑

i=1

(

∫

T̂

v̂p̂idx̂
)

ϕ̂i, ∀v̂ ∈ Pk(T̂ ), (3.12)

where
∫

T̂
p̂iϕ̂jdx̂ = δij .

In the same way as the triangular case, we have

Lemma 3.2. For the reference tetrahedron T̂ , we have

|v̂|1,T̂ ≤
√

B̂k‖v̂‖T̂ , ∀v̂ ∈ Pk(T̂ ), (3.13)

where

B̂k =

3
∑

j=1

(

N
∑

i=1

‖∂ϕ̂i

∂xj

‖
T̂

)2

. (3.14)

Likewise for practical application we give sharper estimate of the constant for k = 1. Let

p̂0 =
√
6, p̂1 =

√
60(λ̂0 − λ̂1), p̂2 =

√
60(λ̂2 − λ̂3) and p̂3 =

√
120(λ̂2 + λ̂3 − 1

2 ), then it is easy

to get
∫

T̂

p̂ip̂jdx̂ = δij , 0 ≤ i, j ≤ 3,

that is to say, {p̂0, p̂1, p̂2, p̂3} is the L2-orthogonal base of P1(T̂ ).

For any v̂ ∈ P1(T̂ ), we define

v̂ =

3
∑

i=0

aip̂i, ‖v̂‖2
T̂
=

3
∑

i=0

a2i ,

where ai =
∫

T̂
v̂p̂idx̂ for i = 0, 1, 2, 3. Then there holds

|v̂|2
1,T̂

=

∫

T̂

3
∑

j=1

( ∂v̂

∂x̂j

)2

dx̂

= |T̂ |
(

240a21 + 60(
√
2a3 − a1 + a2)

2 + 60(
√
2a3 − a1 − a2)

2
)

= 40a21 + 20(
√
2a3 − a1)

2 + 20a22

≤ 40a21 + 20
(

2a23 + (a21 + 2a23) + a21

)

+ 20a22

≤ 80

3
∑

i=0

a2i = 80‖v̂‖2
T̂
.

Hence for the linear tetrahedral element we can set B̂1 = 80 in (3.13), that is

|v̂|1,T̂ ≤ 4
√
5‖v̂‖

T̂
, ∀v ∈ P1(T̂ ). (3.15)
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Furthermore, the above constant is optimal. In fact, for v̂ = −
√
2p̂1 + p̂3 there holds |v̂|1,T̂ =

4
√
5‖v̂‖

T̂
.

In the similar way as the triangular case, we can get the inverse inequalities on a general

tetrahedron.

Remark 3.3. Obviously, the above method for the complex can be generalized to any bounded

convex domain and get corresponding inverse inequalities for the polynomial spaces.

4. General Inverse Inequalities

In this section, we discuss general inverse inequalities from Theorems 2.1 and 3.1 for the

1-D and 2-D cases.

Theorem 4.1. Assume 0 ≤ l < m, T is an interval (a, b) for 1-D case and a triangle for 2-D

case, then for any v ∈ Pk(T ), there holds

|v|m,T ≤ Dn,ml

hm−l
|v|l,T , (4.1)

where Dn,ml = Cn,k−lCn,k−l−1 . . . Cn,k−m+1, h = b − a for 1-D case, h is the medium edge

length and Cn,i is respectively given in Theorems 2.1 and 3.1 for n = 1, 2.

Proof. We only prove (4.1) for n = 2. For n = 1, according to Theorem 2.1 we can easily

get (4.1) by analogy.

Since Dαv ∈ Pk−|α|(T ), according to Theorem 3.1 we have

|v|2l+1,T =
∑

|α|=l+1

(l + 1)!

α!
‖Dαv‖2T

=
∑

|α|= l+1

α1>0,α2>0

l!(α1 + α2)

α!
‖Dαv‖2T + ‖D(l+1,0)v‖2T + ‖D(0,l+1)v‖2T

=
∑

|α|= l+1

α1>0,α2>0

( l!

(α1 − 1)!α2!
+

l!

α1!(α2 − 1)!

)

‖Dαv‖2T + ‖D(l+1,0)v‖2T + ‖D(0,l+1)v‖2T

=
∑

|α|= l+1

α1 > 0

l!

(α1 − 1)!α2!
‖Dαv‖2T +

∑

|α|= l+1

α2 > 0

l!

α1!(α2 − 1)!
‖Dαv‖2T

=
∑

|α|=l

l!

α!
‖Dα+(1,0)v‖2T +

∑

|α|=l

l!

α!
‖Dα+(0,1)v‖2T

=
∑

|α|=l

l!

α!

(

‖Dα+(1,0)v‖2T + ‖Dα+(0,1)v‖2T
)

=
∑

|α|=l

l!

α!
|Dαv|21,T

≤
(C2,k−l

h

)2 ∑

|α|=l

l!

α!
‖Dαv‖2T =

(C2,k−l

h

)2

|v|2l,T .
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Consequents,

|v|l+1,T ≤ C2,k−l

h
|v|l,T . (4.2)

By analogy we obtain (4.1). �
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