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Abstract

In this paper, nonconforming quasi-Wilson finite element approximation to a class

of nonlinear sine-Gordan equations is discussed. Based on the known higher accuracy

results of bilinear element and different techniques from the existing literature, it is proved

that the inner product (∇(u − I1hu),∇vh) and the consistency error can be estimated as

order O(h2) in broken H1
− norm/L2

− norm when u ∈ H3(Ω)/H4(Ω), where I1hu is the

bilinear interpolation of u, vh belongs to the quasi-Wilson finite element space. At the same

time, the superclose result with order O(h2) for semi-discrete scheme under generalized

rectangular meshes is derived. Furthermore, a fully-discrete scheme is proposed and the

corresponding error estimate of order O(h2 + τ 2) is obtained for the rectangular partition

when u ∈ H4(Ω), which is as same as that of the bilinear element with ADI scheme and

one order higher than that of the usual analysis on nonconforming finite elements.

Mathematics subject classification: 65N15, 65N30.

Key words: Sine-Gordon equations, Quasi-Wilson element, Semi-discrete and fully-discrete
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1. Introduction

Consider the following nonlinear sine-Gordon equations [1]:







utt + αut − γ∆u+ β sinu = f, (X, t) ∈ Ω× (0, T ],

u |∂Ω= 0, t ∈ (0, T ],

u(X, 0) = u0(X), ut(X, 0) = u1(X), X ∈ Ω,

(1.1)

where Ω ⊂ R2 is a convex and bounded region with Lipschitz boundary ∂Ω, X = (x, y), u =

u(X, t), α, β, γ are positive constants, u0, u1, f = f(X, t) are known smooth functions.

There have been a lot of studies devoted to (1.1). For example, [1] proved the existence and

uniqueness of the solution; [2] presented an explicit finite difference method for the numerical

solution; [3] obtained analytical solutions to the unperturbed sine-Gordon equation with zero

damping, i.e., α ≡ 0; [4] established the Fourier quasi-spectrum explicit scheme and gave the

convergence and error estimation; [5] discussed two implicit difference schemes and provided

the numerical results; [6] studied an ADI scheme of bilinear element and deduced O(τ2 +

h2) order estimates; [7] considered the general approximation scheme for a class of low order
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nonconforming finite elements satisfying some assumptions and derived the optimal order error

estimates.

As we know, Wilson element [8,9] has been widely used in engineering computation, but it

is only convergent for rectangular and parallelogram meshes. In order to extend this element to

arbitrary quadrilateral meshes, various improvedWilson elements were developed. For instance,

[10] proposed a quasi-Wilson element by simply adding a high order term, which is independent

of the element geometry, to the nonconforming part of the shape function; [11] generalized the

result of [10] to a class of quasi-Wilson arbitrary quadrilateral elements; In [12], a special prop-

erty is discovered, i.e., the consistency error is of order O(h2) in broken H1 − norm, one order

higher than that of its interpolation error O(h), which is similar to the famous nonconform-

ing rectangular EQrot
1 element[13,14], the Qrot

1 square element[15,16] and the constrained Qrot
1

element[17,18]; Especially, [19] applied this quasi-Wilson element to second-order problems on

narrow quadrilateral meshes. However, all of the above studies on quasi-Wilson element are

only limited to the linear problems.

In this paper, as a continuous work of [7], we will apply this quasi-Wilson finite element to

problem (1.1). Based on the known higher accuracy results of bilinear element and different

approaches from the existing literature, we prove that the estimations of the inner product of

gradients of the difference between u and its bilinear interpolation I1hu with any polynomial of

the finite element space and the consistency error are of order O(h2) in broken H1 − norm or

L2 − norm when u ∈ H3(Ω) or H4(Ω) (see Lemmas 2.2–2.3 below). At the same time, the

superclose result with orderO(h2) is obtained although the mean values of quasi-Wilson element

across the edges between elements are not continuous which does not satisfy the requirement

(III) of [7]. Furthermore, a kind of fully-discrete scheme is proposed, and the O(h2 + τ2) order

error estimate is derived, which improves the result O(h + τ2) of [7] by one order with respect

to h, and as same as [6] with ADI scheme.

The rest of the paper is organized as follows. In the next section, we introduce the noncon-

forming quasi-Wilson element, and prove the important characters of the element, and derive

the superclose result. In Section 3, a kind of fully-discrete scheme is proposed and the optimal

order error estimate is gained.

Throughout this paper, c denotes a general positive constant which is independent of h,

where h = maxKhK , hK is the diameter of the element K, τ is the time step for the partition

of the time interval [0, T ].

2. Quasi-Wilson Element and Superclose Result

Let K̂ = [0, 1] × [0, 1] be the reference element with vertices M̂1(0, 0), M̂2(1, 0), M̂3(1, 1),

M̂4(0, 1). We define on K̂ the finite element (K̂, P̂ , Σ̂) as follows:

P̂ = span
{

Ni(ξ, η), (i = 1, 2, 3, 4), Ψ̂(ξ), Ψ̂(η)
}

,

where N1(ξ, η) = (1−ξ)(1−η), N2(ξ, η) = ξ(1−η), N3(ξ, η) = ξη, N4(ξ, η) = (1−ξ)η, Ψ̂(s) =

− 3
4s(s − 1) + 5

32 [(2s − 1)4 − 1]. The degrees of freedom are taken as Σ̂ = {v̂1, · · ·, v̂4, β̂1, β̂2},

where v̂i = v̂(M̂i), i = 1, 2, 3, 4. β̂1 =
∫

K̂
∂2v̂
∂ξ2

dξdη, β̂2 =
∫

K̂
∂2v̂
∂η2 dξdη. We have

v̂(ξ, η) =

4
∑

i=1

v̂iNi(ξ, η) + β̂1Ψ̂(ξ) + β̂2Ψ̂(η).
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Let K be a generalized rectangular(see, e.g., [20]) with vertices Mi(xi, yi), 1 ≤ i ≤ 4. Then

there exists a unique mapping FK : K̂ → K

xK =

4
∑

i=1

Ni(ξ, η)xi, yK =

4
∑

i=1

Ni(ξ, η)yi.

For any function v(x, y) defined on K, we define v̂(ξ, η) by

v̂(ξ, η) = v(xK(ξ, η), yK(ξ, η)) or v̂ = v ◦ FK .

On the generalized rectangular element K, we define the shape function space PK by

PK = {p = p̂ ◦ F−1
K , p̂ ∈ P̂}.

Let Ω̄ =
⋃

K∈Th
K be a decomposition of Ω with diameters ≤ h, such that Th satisfies the usual

regular assumption ([26]). The finite element space is V h = {vh : vh|K ∈ PK , ∀K ∈ Th, v is

continuous at the vertices of elements and vanishing at the vertices on the boundary of Ω}.

Then for every vh ∈ V h, vh can be written as

vh = v̄h + v1h,

where v̄h and v1h are the conforming part and the nonconforming part of vh, respectively. Let

S1
h and S2

h be the bilinear and biquadratic space, I1h : H2(Ω) → S1
h and I2h : H2(Ω) → S2

h be

the associated interpolation operators with respect to Th.

The weak form of (1.1) is: Find u ∈ H1
0 (Ω), such that

{

(utt, v) + α(ut, v) + γ(∇u,∇v) + β(sinu, v) = (f, v), ∀v ∈ H1
0 (Ω),

u(X, 0) = u0(X), ut(X, 0) = u1(X).
(2.1)

The corresponding semi-discrete finite element procedure to (2.1) is: Find uh ∈ V h, such that

{

(uh
tt, vh) + α(uh

t , vh) + γ(∇hu
h,∇hvh)h + β(sinuh, vh) = (f, vh), ∀vh ∈ V h,

uh(X, 0) = I1hu0, uh
t (X, 0) = I1hu1,

(2.2)

where ∇h denotes the gradient operator defined on V h piecewisely with

(u, v)h =
∑

K

∫

K

u · vdxdy.

Lemma 2.1. Let Th be the generalized rectangular meshes. Then for any vh ∈ V h and

vh = v̄h + v1h, we have

‖vh‖
2
h = ‖v̄h‖

2
h + ‖v1h‖

2
h, ‖v1h‖0 ≤ ch‖vh‖h, (2.3a)

∫

K

v1hdxdy =

∫

K

q1
∂v1h
∂x

dxdy =

∫

K

q1
∂v1h
∂y

dxdy = 0. (2.3b)

Furthermore, if Th is the rectangular partition,

∫

K

q1v
1
hdxdy =

∫

K

q2
∂v1h
∂x

dxdy =

∫

K

q2
∂v1h
∂y

dxdy = 0, (2.4)
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where ‖ · ‖h = (
∑

K

| · |21,K)
1
2 is a norm on V h, q1 ∈ S1

h, q2 ∈ S2
h.

Proof. The proof of (2.3) can be found in [12]. Here we only need to prove (2.4). In this

case, assume that the four vertices of K ∈ Th are M1(xK−hx,K , yK−hy,K), M2(xK+hx,K , y−

hy,K), M3(xK+hx,K , yK+hy,K), M4(xK−hx,K , y+hy,K). Then there exists a unique mapping

F 1
K : K̂ → K

x = xK + (2ξ − 1)hx,K , y = yK + (2η − 1)hy,K . (2.5)

Let |J | be the Jacobian of (2.5), because q1 ∈ S1
h, q2 ∈ S2

h. We can check that

∫

K

xv1hdxdy =

∫

K̂

(xK + (2ξ − 1))(β1Ψ̂(ξ) + β2Ψ̂(η))|J |dxdy

=

∫

K̂

(xK + (2ξ − 1))4hx,Khy,K(β1Ψ̂(ξ) + β2Ψ̂(η))dxdy,

∫

K

yv1hdxdy =

∫

K̂

(yK + (2η − 1))(β1Ψ̂(ξ) + β2Ψ̂(η))|J |dxdy

=

∫

K̂

(yK + (2η − 1))4hx,Khy,K(β1Ψ̂(ξ) + β2Ψ̂(η))dxdy,

∫

K

x2y2
∂v1h
∂x

dxdy =

∫

K̂

(xK + (2ξ − 1)hx,K)2(yK + (2η − 1)hy,K)2
∂v̂1h
∂ξ

|J |dξdη

=

∫

K̂

(xK + (2ξ − 1)hx,K)2(yK + (2η − 1)hy,K)22hy,KΨ̂′(ξ)dξdη.

On the other hand, by the definition of Ψ̂(s), it is easy to check

∫ 1

0

Ψ̂(s)ds =

∫ 1

0

Ψ̂′(s)ds =

∫ 1

0

sΨ̂(s)ds =

∫ 1

0

sΨ̂′(s)ds =

∫ 1

0

s2Ψ̂′(s)ds = 0. (2.6)

Then
∫

K

xv1hdxdy =

∫

K

yv1hdxdy =

∫

K

x2y2
∂v1h
∂x

dxdy = 0.

Similarly, we can treat all other terms appeared in (2.4). The proof is completed. �

Note that for all vh ∈ V h, we get from (2.3) that

‖vh‖20 ≤ ‖v̄h‖20 + ‖v1h‖
2
0 ≤ c‖vh‖2h + ch‖vh‖2h ≤ c‖vh‖2h. (2.7)

Now we start to prove the other two important lemmas.

Lemma 2.2. Let ω = u − I1hu, Th be the generalized rectangular meshes. Then if u ∈ H3(Ω),

there holds

(∇hω,∇hvh)h ≤ ch2|u|3‖vh‖h, ∀vh ∈ V h. (2.8)

Furthermore, if u ∈ H4(Ω), Th is a family of rectangular meshes, we have

(∇hω,∇hvh)h ≤ ch2|u|4‖vh‖0. (2.9)

Proof. For all vh ∈ V h, it has been shown in [20] that

(∇hω,∇hv̄h)h ≤

{

ch2|u|3‖v̄h‖h, u ∈ H3(Ω),

ch2|u|4‖v̄h‖0, u ∈ H4(Ω).
(2.10)
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On the other hand, by the first term of (2.10) and (2.3) of Lemma 2.1, we obtain

(∇hω,∇hvh)h = (∇hω,∇hv̄h)h + (∇hω,∇hv
1
h)h

= (∇hω,∇hv̄h)h + (∇hω − I1h∇hω,∇hv
1
h)h

≤ ch2|u|3‖v̄h‖h + ch2
∑

K

|∇hω|2,K‖∇hv
1
h‖0,K

≤ ch2|u|3‖v̄h‖h + ch2|u|3‖v
1
h‖h ≤ ch2|u|3‖vh‖h.

When u ∈ H4(Ω), Th is rectangular partition, by use of the second estimate of (2.10) and the

inverse inequality, we have

(∇hω,∇hvh)h = (∇hω,∇hv̄h)h + (∇hω,∇hv
1
h)h

= (∇hω,∇hv̄h)h + (∇hω − I2h∇hω,∇hv
1
h)h

≤ ch2|u|4‖v̄h‖0 + ch3
∑

K

|∇hω|3,K‖∇hv
1
h‖0,K

≤ ch2|u|4‖v̄h‖0 + ch3|u|4‖v
1
h‖h ≤ ch2|u|4‖vh‖0.

The proof is complete. �

Lemma 2.3. For u ∈ H3(Ω), there holds

|
∑

K

∫

∂K

∂u

∂n
vhds| ≤ ch2|u|3‖vh‖h, ∀vh ∈ V h. (2.11)

Furthermore, if u ∈ H4(Ω), Th is rectangular partition, we have

∣

∣

∣

∣

∣

∑

K

∫

∂K

∂u

∂n
vhds

∣

∣

∣

∣

∣

≤ ch2|u|4‖vh‖0, (2.12)

where n denotes the unit out normal vector over ∂K.

Proof. As (2.11) has been proved in [11], here we just need to prove (2.12). In fact, for each

v ∈ V h,
∑

K

∫

∂K

∂u

∂n
v̄hds = 0. (2.13)

On the other hand,

∑

K

∫

∂K

∂u

∂n
v1hds = (∆hu, v

1
h)h + (∇hu,∇hv

1
h)h, (2.14)

where ∆h is the Laplace operator defined piecewisely. By the interpolation theory and Lemma

2.2, we have

(∆hu, v
1
h)h = (∆hu− I1h∆hu, v

1
h)h ≤ ch2

∑

K

|∆hu|2,K ‖v1h‖0 ≤ ch2|u|4‖vh‖0, (2.15)

and

|(∇hu,∇hv
1
h)h| = |(∇hu− I2h∇hu,∇hv

1
h)h

≤ ch3
∑

K

|∇u|3‖∇hv
1
h‖0 ≤ ch3|u|4‖vh‖h ≤ ch2|u|4‖vh‖0. (2.16)
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Substituting (2.15)-(2.16) into (2.14) yields

∣

∣

∣

∣

∣

∑

K

∫

∂K

∂u

∂n
v1hds

∣

∣

∣

∣

∣

≤ ch2|u|4‖vh‖0,

which joins together with (2.13) leads to (2.12). The proof is complete. �

Now we are ready to prove one of the main results of this paper.

Theorem 2.1. Suppose u and uh are the solutions of (2.1) and (2.2), respectively. If u, ut ∈

H3(Ω), utt ∈ H2(Ω), then there holds

‖uh
t (t)− I1hut(t)‖0 + ‖uh(t)− I1hu(t)‖h ≤ ch2

(
∫ t

0

‖u‖2
∗
dτ + |u|23

)

1
2

,

where ‖u‖2
∗
= |utt|

2
2 + |u|22 + |ut|

2
3.

Proof. Let θ = uh − I1hu, for all vh ∈ V h, there holds the following error equation:

(θtt, vh) + γ(∇hθ,∇hvh)h + α(θt, vh)

= (ωtt, vh) + γ(∇hω,∇hvh)h + α(ωt, vh)− β(sin uh − sinu, vh) (2.17)

−γ
∑

K

∫

∂K

∂u

∂n
vhds.

Noting that

|β(sin uh − sinu, vh)| ≤ β‖uh − u‖0‖vh‖0

≤ β(‖uh − I1hu‖0 + ‖I1hu− u‖0)‖vh‖0. (2.18)

Choosing vh = θt ∈ V h in (2.17), by (2.8) and (2.18), we obtain

1

2

d

dt

(

‖θt‖
2
0 + γ‖θ‖2h

)

+ α‖θt‖
2
0

≤ ch2|utt|2‖θt‖0 + γ
d

dt
(∇hω,∇hθ)h − γ(∇hωt,∇hθ)h + ch2|ut|2‖θt‖0

+ ch2|u|2‖θt‖0 + β‖θ‖0‖θt‖0 − γ
d

dt

∑

K

∫

∂K

∂u

∂n
θds+ γ

∑

K

∫

∂K

∂ut

∂n
θds

≤ ch2|utt|2‖θt‖0 + γ
d

dt
(∇hω,∇hθ)h + ch2|ut|3‖θ‖h + ch2|ut|2‖θt‖0

+ ch2|u|2‖θt‖0 + β‖θ‖0‖θt‖0 − γ
d

dt

∑

K

∫

∂K

∂u

∂n
θds+ γ

∑

K

∫

∂K

∂ut

∂n
θds.

Applying (2.7), (2.11), Schwartz’s inequality and noting that α‖θt‖
2
0 ≥ 0, we get

1

2

d

dt

(

‖θt‖
2
0 + γ‖θ‖2h

)

≤ ch4‖u‖2
∗
+ c(‖θ‖20 + ‖θt‖

2
0)− γ

d

dt

∑

K

∫

∂K

∂u

∂n
θds+ γ

d

dt
(∇hω,∇hθ)h

≤ ch4‖u‖2
∗
+ c(‖θ‖2h + ‖θt‖

2
0)− γ

d

dt

∑

K

∫

∂K

∂u

∂n
θds+ γ

d

dt
(∇hω,∇hθ)h. (2.19)
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Integrating the both sides of (2.19) with respect to time from 0 to t, and noting θ(X, 0) =

θt(X, 0) = 0, we obtain

‖θt‖
2
0 + γ‖θ‖2h

≤ ch4

∫ t

0

‖u‖2
∗
dτ + c

∫ t

0

(

‖θ‖2h + ‖θt‖
2
0

)

dτ + γ
∑

K

∫

∂K

∂u

∂n
θds+ γ

d

dt

(

∇hω,∇hθ
)

h
.

Taking (2.11) and Schwartz’s inequality, we have

‖θt‖
2
0 + ‖θ‖2h ≤ ch4

∫ t

0

‖u‖2
∗
dτ + c

∫ t

0

(

‖θ‖2h + ‖θt‖
2
0

)

dτ + ch4|u|23. (2.20)

Applying Gronwall’s lemma and (2.20) yields the desired result. �

3. Fully-Discrete Scheme and Error Estimates

In this section, we will propose a fully-discrete scheme for approximating solution u of

problem (1.1) and discuss the related error estimate.

Let 0 = t0 < t1 < · · · < tM = T be a given partition of the time interval [0, T ] with step

length τ = T
M

for some positive integer M . For a function ϕ on [0, T ], define ϕn = ϕ(X, tn),

ϕn+ 1
2 =

1

2
(ϕn+1 + ϕn), ∂̄tϕ

n+ 1
2 =

1

τ
(ϕn+1 − ϕn),

ϕn, 1
4 =

1

4
(ϕn+1 + 2ϕn + ϕn−1) =

1

2
(ϕn+ 1

2 + ϕn− 1
2 ),

∂̄tϕ
n =

ϕn+1 − ϕn−1

2τ
=

ϕn+ 1
2 − ϕn− 1

2

τ
=

1

2
(∂̄tϕ

n+ 1
2 + ∂̄tϕ

n− 1
2 ),

∂̄ttϕ
n =

ϕn+1 − 2ϕn + ϕn−1

τ2
=

(∂̄tϕ
n+ 1

2 − ∂̄tϕ
n− 1

2 )

τ
.

The problem (1.1) is equivalent to the following formulation










(∂̄ttu
n, v) + α(∂̄tu

n, v) + γ(∇un, 1
4 ,∇v) + β(sinn, 1

4 u, v) = (fn, 1
4 , v)

+(rn, v) + α(pn, v), ∀ v ∈ H1
0 (Ω),

u0 = u0(X), u0
t = u1(X), ∀X ∈ Ω,

(3.1)

where

rn = ∂̄ttu
n − u

n, 1
4

tt = O(τ2), pn = ∂̄tu
n − u

n, 1
4

t = O(τ2).

We can establish the fully-discrete scheme as: Find Un ∈ V h, such that










(∂̄ttU
n, vh) + α(∂̄tU

n, vh) + γ(∇hU
n, 1

4 ,∇hvh)h + β(sinn,
1
4 U, vh)

= (fn, 1
4 , vh), ∀ vh ∈ V h,

U0 = I1hu0(X), U1 = I1h(u0(X) + τu1(X) + τ2

2 utt(X, 0)).

(3.2)

In order to get the error estimate, let Un − un = (Un − I1hu
n) + (I1hu

n − un) = ρn + σn. then

for all vh ∈ V h, we get from (3.1) and (3.2) that

(∂̄ttρ
n, vh) + γ(∇hρ

n, 1
4 ,∇hvh)h + α(∂̄tρ

n, vh)

= −(∂̄ttσ
n, vh)− α(∂̄tσ

n, vh)− γ(∇hσ
n, 1

4 ,∇hvh)h − (rn, vh)

−α(pn, vh)− γ
∑

K

∫

∂K

∂un,1
4

∂n
vhds− β(sinn,

1
4 U − sinn,

1
4 u, vh). (3.3)
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Now we state the other main result of this paper.

Theorem 3.1. Assume that u and Un are solutions of (1.1) and (3.2) respectively, if u, ut ∈

H3(Ω), utt ∈ H2(Ω), Th is a family of generalized rectangular meshes, and τ is sufficiently

small, there holds

‖∂̄t(U
n− 1

2 − un− 1
2 )‖20 + ‖Un − un‖2h ≤ c

(

τ4 + h2
)

, n = 1, 2, · · ·,M. (3.4)

Furthermore, if u ∈ H4(Ω), Th is rectangular partition, then we have

‖∂̄t(U
n− 1

2 − un− 1
2 )‖20 + ‖Un − un‖2h ≤ c

(

τ4 + h4
)

. (3.5)

Proof. Choosing vh = ∂̄tρ
n in (3.3), there holds

(∂̄ttρ
n, ∂̄tρ

n) + γ(∇hρ
n, 1

4 ,∇h∂̄tρ
n)h + α(∂̄tρ

n, ∂̄tσ
n)

= −(∂̄ttσ
n, ∂̄tρ

n)− α(∂̄tσ
n, ∂̄tρ

n)− (rn, ∂̄tρ
n)− α(pn, ∂̄tρ

n) (3.6)

−γ(∇hσ
n, 1

4 ,∇h∂̄tρ
n)h − γ

∑

K

∫

∂K

∂un, 1
4

∂n
∂̄tρ

nds− β(sinn,
1
4 U − sinn,

1
4 u, ∂̄tρ

n).

The terms on the left hand of (3.6) can be rewritten as:

(∂̄ttρ
n, ∂̄tρ

n) =

(

1

τ
(∂̄tρ

n+ 1
2 − ∂̄tρ

n− 1
2 ),

1

2
(∂̄tρ

n+ 1
2 + ∂̄tρ

n− 1
2 )

)

=
1

2τ
(‖∂̄tρ

n+ 1
2 ‖20 − ‖∂̄tρ

n− 1
2 ‖20), (3.7)

γ(∇hρ
n, 1

4 ,∇h∂̄tρ
n)h = γ

(

1

2
∇h(ρ

n+ 1
2 + ρn−

1
2 ),

1

τ
∇h(ρ

n+ 1
2 − ρn−

1
2 )

)

h

=
γ

2τ
(‖ρn+

1
2 ‖2h − ‖ρn−

1
2 ‖2h), (3.8)

and

α(∂̄tρ
n, ∂̄tρ

n) = α‖∂̄tρ
n‖20. (3.9)

Now we estimate each term of the right hand of (3.6). Firstly, by Schwartz’s inequality and the

definitions of rn and pn, we have

− (∂̄ttσ
n, ∂̄tρ

n) + α(∂̄tσ
n, ∂̄tρ

n) ≤ c(‖∂̄ttσ
n‖20 + ‖∂̄tσ

n‖20) + c‖∂̄tρ
n‖20, (3.10)

(rn, ∂̄tρ
n) + α(pn, ∂̄tρ

n) ≤ cτ4 + c‖∂̄tρ
n‖20. (3.11)

Then by (2.8), for t = tn, we get

γ(∇hσ
n, 1

4 ,∇h∂̄tρ
n)h = ch2|un, 1

4 |3‖∂̄tρ
n‖h

≤ ch|un, 1
4 |3‖∂̄tρ

n‖0 ≤ ch2|un, 1
4 |23 + c‖∂̄tρ

n‖20. (3.12)

Applying (2.11) yields

γ
∑

K

∫

∂K

∂un, 1
4

∂n
∂̄tρ

nds ≤ ch2|un, 1
4 |3‖∂̄tρ

n‖h ≤ ch|un, 1
4 |3‖∂̄tρ

n‖0

≤ ch2|un, 1
4 |23 + c‖∂̄tρ

n‖20, (3.13)
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and

β(sinn, 1
4 U − sinn,

1
4 u, ∂̄tρ

n)

=
β

4

(

(sinUn+1 + 2 sinUn + sinUn−1)− (sinun+1 + 2 sinun + sinun−1), ∂̄tρ
n
)

≤ c
(

‖Un+1 − un+1‖0 + ‖Un − un‖0 + ‖Un−1 − un−1‖0

)

‖∂̄tρ
n‖0

≤ c
(

‖ρn+1‖20 + ‖ρn‖20 + ‖ρn−1‖20

)

+ c‖∂̄tρ
n‖20 + c

(

‖σn+1‖20 + ‖σn+1‖20 + ‖σn+1‖20

)

≤ c
(

‖ρn+1‖20 + ‖ρn‖20 + ‖ρn−1‖20

)

+ c‖∂̄tρ
n‖20 + ch4

(

|un+1|22 + |un|22 + |un−1|22

)

. (3.14)

Substituting (3.7)-(3.14) into (3.6), we have

1

2τ

(

‖∂̄tρ
n+ 1

2 ‖20 − ‖∂̄tρ
n− 1

2 ‖20

)

+
γ

2τ

(

‖ρn+
1
2 ‖2h − ‖ρn−

1
2 ‖2h

)

+ α‖∂̄tρ
n‖20

≤ c
(

‖∂̄ttσ
n‖20 + ‖∂̄tσ

n‖20

)

+ c‖∂̄tρ
n‖20 + cτ4 + ch2|un, 1

4 |23

+ch4
(

|un+1|22 + |un|22 + |un−1|22

)

+ c
(

‖ρn+1‖20 + ‖ρn‖20 + ‖ρn−1‖20

)

≤ c
(

‖∂̄ttσ
n‖20 + ‖∂̄tσ

n‖20

)

+ c‖∂̄tρ
n‖20 + cτ4 + ch2|un, 1

4 |23

+ch4
(

|un+1|22 + |un|22 + |un−1|22

)

+ c
(

‖ρn+1‖2h + ‖ρn‖2h + ‖ρn−1‖2h

)

. (3.15)

On the other hand

|∂̄ttσ
n‖20 =

∥

∥

∥

∥

1

τ2
(σn+1 − 2σn − σn−1)

∥

∥

∥

∥

2

0

=

∥

∥

∥

∥

∥

1

τ2

(

∫ tn+1

tn

σtdt−

∫ tn

tn−1

σtdt

)
∥

∥

∥

∥

∥

2

0

=

∥

∥

∥

∥

∥

1

τ2

(

∫ tn+1

tn

σtdt− τσn
t + τσn

t −

∫ tn

tn−1

σtdt

)∥

∥

∥

∥

∥

2

0

=

∥

∥

∥

∥

∥

1

τ2

(

∫ tn+1

tn

σtt(tn+1 − t)dt+

∫ tn

tn−1

σtt(t− tn−1)dt

)∥

∥

∥

∥

∥

2

0

≤
1

τ4

[
∫

K

(
∫ tn+1

tn

σ2
ttdt ·

∫ tn+1

tn

(tn+1 − t)2
)

dxdy

+

∫

K

(

∫ tn

tn−1

σ2
ttdt ·

∫ tn

tn−1

(t− tn−1)
2

)

]

dxdy

≤
c

τ

∫ tn

tn−1

‖σtt‖
2
0dt ≤

ch4

τ

∫ tn

tn−1

|utt|
2
2dt, (3.16)

and similarly,

‖∂̄tσ
n‖20 ≤

c

τ

∫ tn+1

tn−1

‖σt‖
2
0dt ≤

ch4

τ

∫ tn+1

tn−1

|ut|
2
2dt. (3.17)

By the definition of ∂̄tρ
n, there holds

‖∂̄tρ
n‖20 ≤ c

(

‖∂̄tρ
n+ 1

2 ‖20 + ‖∂̄tρ
n− 1

2 ‖20

)

.
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Summing from n = 1 to M − 1 and noting α‖∂̄tρ
n‖20 ≥ 0, we obtain

‖∂̄tρ
M−

1
2 ‖20 + γ‖ρM−

1
2 ‖2h

≤ ‖∂̄tρ
1
2 ‖20 + γ‖ρ

1
2 ‖2h + cτ

M−1
∑

n=1

(

‖∂̄tρ
n− 1

2 ‖20 + ‖ρn‖2h

)

+ cτ
(

‖∂̄tρ
M−

1
2 ‖20 + ‖ρM‖2h

)

+ cτ4 + cτh2
M−1
∑

n=1

|un, 1
4 |23 + cτh4

M
∑

n=1

|un|22 + ch4

∫ T

0

(

|utt|
2
2 + |ut|

2
2

)

dt, (3.18)

where

cτh2
M
∑

n=1

|un, 1
4 |23 ≤ ch2 ·Mτ · 4max{|un|23} ≤ ch2,

cτh4
M
∑

n=1

|un|22 ≤ ch4 ·Mτ · 4max{|un|22} ≤ ch4.

At the same time, by Taylor’s formula, we have

‖∂̄tρ
1
2 ‖20 = ‖

1

τ
ρ1‖20 =

1

τ2
‖U1 − I1hu

1‖20

≤
1

τ2
‖U1 − I1h(u0(X) + τu1(X) +

τ2

2
utt(X, 0) +

τ3

6
uttt(X, δ))‖20

≤ cτ4‖I1huttt(X, δ)‖20, (δ ∈ (0, t1)),

and

‖ρ
1
2 ‖2h = ‖

1

2
ρ1‖2h ≤ cτ6.

On the other hand, by ε−Young inequality, we have

‖ρM−
1
2 ‖2h =

1

4

(

‖ρM‖2h + ‖ρM−1‖2h + 2(∇ξM ,∇ρM−1)
)

≥
1

4

(

‖ρM‖2h − ε‖ρM‖2h − C(ε)‖ρM−1‖2h

)

.

Then (3.18) can be rewritten as

(1 − cτ)‖∂̄tρ
M−

1
2 ‖20 + (

1− ε

4
γ − cτ)‖ρM‖2h (3.19)

≤ c(h2 + τ4) + cτ

M−2
∑

n=1

(

‖∂̄tρ
n− 1

2 ‖20 + ‖ρn‖2h

)

+ (cτ +
C(ε)

4
)
(

‖∂̄tρ
M−

3
2 ‖20 + ‖ρM−1‖2h

)

.

Choos sufficiently small τ and ε such that 1−cτ,
1− ε

4
γ−cτ > 0. Applying discrete Gronwall’s

lemma gives

‖∂̄tρ
n− 1

2 ‖20 + ‖ρn‖2h ≤ c(τ4 + h4). (3.20)

Similarly with (3.16), we have

‖∂̄tσ
n− 1

2 ‖20 ≤
c

τ

∫ tn

tn−1

‖σt‖
2
0dt ≤

ch4

τ

∫ tn

tn−1

|ut|
2
2dt

≤
ch4

τ
· τ · sup |ut|

2
2 ≤ ch4, (3.21)

‖σn‖2h = ‖σn − σ0‖2h ≤ c

∫ tn

0

‖σt‖
2
hdt ≤ ch4

∫ tn

0

|ut|
2
3dt. (3.22)
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By (3.20-3.22) and triangular inequality, we can get the desired result of (3.4). Moreover, if

u ∈ H4(Ω), Th is rectangular partition, from (2.9) and (2.12) we know that (3.12) and (3.13)

can be rewritten as

γ(∇hσ
n, 1

4 ,∇h∂̄tρ
n) ≤ ch2|un, 1

4 |4‖∂̄tρ
n‖0 ≤ ch4|un, 1

4 |24 + c‖∂̄tρ
n‖20, (3.23)

γ
∑

K

∫

∂K

∂un, 1
4

∂n
∂̄tρ

nds ≤ ch3|un, 1
4 |4‖∂̄tρ

n‖h ≤ ch2|un, 1
4 |4‖∂̄tρ

n‖0

≤ ch4|un, 1
4 |24 + c‖∂̄tρ

n‖20. (3.24)

Thus if the estimates of (3.12) and (3.13) are replaced by (3.23) and (3.24), respectively, we

can get (3.5) similarly. This completes the proof. �

4. Concluding Remarks

We conclude this paper by making some remarks. First, it can be checked that the result

of (3.5) is as same as [5] for problem (1.1) in 1D with two implicit difference schemes and [6] in

2D with ADI scheme of bilinear finite element.

For the well known nonconforming Qrot
1 element, EQrot

1 element, CNQrot
1 element, quasi-

Carey element ([21]), P 1-nonconforming rectangular element ([22]) and modified Crouzeix-

Raviart type element ([23]), the estimation of semi-discrete is also valid if they are applied to

problem (1.1). However, the result of (3.5) can not be achieved by the above finite elements as

they do not satisfy characters (2.9) and (2.12) in Lemma 2.2 and Lemma 2.3, i.e., (3.13) and

(3.14) can not be improved to (3.23) and (3.24), respectively, although they have been widely

applied to many problems (see [21-25]). This further indicates the significance of the choice of

special quasi-Wilson element in this paper.

We also point out that, for quasi-Wilson element,
∫

F
[vh]ds 6= 0, ∀F ⊂ ∂K, vh ∈ V h, which

does not satisfy the requirement in the usual nonconforming finite element analysis, and the

techniques used in the present work are very different from the existing literature (see [7,13-25]).
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