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Abstract

The Modified Hermitian and skew-Hermitian splitting (MHSS) iteration method was

presented and studied by Bai, Benzi and Chen (Computing, 87(2010), 93-111) for solving

a class of complex symmetric linear systems. In this paper, using the properties of Toeplitz

matrix, we propose a class of structured MHSS iteration methods for solving the complex

Toeplitz linear system. Theoretical analysis shows that the structured MHSS iteration

method is unconditionally convergent to the exact solution. When the MHSS iteration

method is used directly to complex symmetric Toeplitz linear systems, the computational

costs can be considerately reduced by use of Toeplitz structure. Finally, numerical ex-

periments show that the structured MHSS iteration method and the structured MHSS

preconditioner are efficient for solving the complex Toeplitz linear system.

Mathematics subject classification: 65F10, 65F50.
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1. Introduction

We consider the complex Toeplitz linear system

Ax = b, (1.1)

with A ∈ C
n×n a large, non-Hermitian, and positive definite Toeplitz matrix, and x, b ∈ C

n.

The complex Toeplitz matrices arise in solutions of differential and integral equations, and in

some practical problems and mathematical methods in physics, statistics, and signal processing.
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A complex Toeplitz matrix A has the form
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, (1.2)

where aj ∈ C. From (1.2) it is easy to know that the matrix A is decided by the elements of its

first row and first column. To solve the complex Toeplitz linear system (1.1), actual structure

and efficient splitting of the Toeplitz matrix A are important and need to be discussed in depth.

Recently, the Hermitian and skew-Hermitian splitting (HSS) iteration method has been paid

great attention. Bai, Golub and Ng introduced the HSS iteration method for solving the non-

Hermitian positive definite linear systems in [8]. Based on the HSS iteration method, Bai,

Benzi and Chen established the modified HSS (MHSS) iteration method for solving a class

of important complex symmetric linear systems in [4], and proposed the generalized MHSS

(GMHSS) iteration method, too. According to properties of the saddle point matrix, Bai and

Golub proposed the accelerated HSS (AHSS) iteration method in [5]. In addition, Gu and Tian

used the HSS iteration method to solve the Toeplitz linear system in [13], and Chen and Jiang

presented the structured HSS and the structured AHSS iteration methods for solving the real

Toeplitz linear systems in [11]; see also [1, 2, 6, 7, 9, 14, 15].

We now describe the HSS, MHSS and GMHSS iteration methods. To this end, the matrix

A is split into its Hermitian and skew-Hermitian parts as

A = H + S,

where H = 1
2 (A + A∗) and S = 1

2 (A − A∗); see [3]. Here, A∗ is used to denote the conjugate

transpose of the matrixA. Based on this splitting, the HSS iteration method [8] can be described

as follows.

The HSS Iteration Method. Given an initial guess x(0) ∈ C
n, for k = 0, 1, 2, . . . until

the iteration sequence {x(k)} converges, compute x(k+1) using the following procedure:
{

(αI +H)x(k+ 1

2
) = (αI − S)x(k) + b,

(αI + S)x(k+1) = (αI −H)x(k+ 1

2
) + b,

where α is a given positive constant, and I is the identity matrix.

When the coefficient matrix A is complex symmetric, we have

A = Re(A) + ıIm(A),

where Re(A) and Im(A) denote the real and the imaginary parts of the matrix A, respectively,

and ı represents the imaginary unit. For the complex symmetric linear system, the MHSS

iteration method [4] is described as follows.

The MHSS Iteration Method. Given an initial guess x(0) ∈ C
n, for k = 0, 1, 2, . . . until

the iteration sequence {x(k)} converges, compute x(k+1) using the following procedure:
{

(αI +Re(A))x(k+ 1

2
) = (αI − Im(A)ı)x(k) + b,

(αI + Im(A))x(k+1) = (αI +Re(A)ı)x(k+ 1

2
) − ıb,
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where α is a given positive constant.

Analogous to the HSS splitting, the complex matrix A has the splitting

A = W + ıT,

where

W =
1

2
(A+A∗), T =

1

2ı
(A−A∗).

According to this splitting, the GMHSS iteration method [4] is described as follows.

The GMHSS Iteration Method. Given an initial guess x(0) ∈ C
n, for k = 0, 1, 2, . . .

until the iteration sequence {x(k)} converges, compute x(k+1) using the following procedure:

{

(αI +W )x(k+ 1

2
) = (αI − ıT )x(k) + b,

(αI + T )x(k+1) = (αI + ıW )x(k+ 1

2
) − ıb,

where α is a given positive constant.

The HSS, MHSS, and GMHSS iteration methods have been proved to be convergent to the

unique solution of the system of linear equations Ax = b where the matrix A ∈ C
n×n is positive

definite.

In this paper, the MHSS iteration method is further specilized to solve the complex Toeplitz

linear system (1.1). Because a complex Toeplitz linear system can be transformed into a complex

symmetric linear system, we propose the structured MHSS iteration method for solving the

complex Toeplitz linear system (1.1). In particular, when the real and imaginary parts of the

Toeplitz matrix is symmetric, we show that the sizes of the sub-systems of linear equations

involved in the two-half steps of the MHSS iteration method can be considerably reduced. This

method is called the MHSS-based structured iteration method, and it saves time when used to

solve the Toeplitz linear system.

The remainder of the paper is organized as follows: In Section 2 the complex Toeplitz linear

system is converted to a complex symmetric linear system. The structured MHSS iteration

method is established and analyzed in Section 3. In Section 4, the symmetric Toeplitz linear

systems are discussed in detail, and the MHSS-based structured iteration method is established.

Finally, in Section 5, numerical examples are used to examine the effectiveness of the structured

MHSS and the MHSS-based structured iteration methods.

2. Some Properties of Complex Toeplitz Matrices

In this section, a complex Toeplitz linear system is transformed into a complex symmetric

linear system by employing a unitary matrix.

Let the complex Toeplitz matrix A have the form (1.2). Then its Hermitian part H is

a centrohermitian matrix and its skew-Hermitian part S is a skew-centrohermitian matrix.

Equivalently, H and S satisfy

H = JnHJn, S = −JnSJn,

where Jn ∈ C
n×n is a permutation matrix with ones on the cross diagonal (bottom left to

top right) and zeros elsewhere, we use H and S to denote the conjugate matrices of H and S,

respectively.
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According to the cases that n is even and odd, the structures of the matrices H and S are

outlined in the following.

(a) When n = 2m, the matrix H can be partitioned into the form

H =

(

B C∗

C B

)

,

where the top row of the Hermitian Toeplitz matrix B is

1

2
[a0 + ā0, a1 + ā−1, . . . , am−1 + ā−m+1],

and the first row and the first column of the Toeplitz matrix C are

1

2
[a−m + ām, a−m+1 + ām−1, . . . , a−1 + ā1]

and

1

2
[a−m + ām, a−m−1 + ām+1, . . . , a−n+1 + ān−1]

T ,

respectively. Similarly, the matrix S can be written as the form

S =

(

D −E∗

E D

)

,

where the top row of the skew-Hermitian Toeplitz matrix D is

1

2
[a0 − ā0, a1 − ā−1, . . . , am−1 − ā−m+1],

the top row and the first column of the Toeplitz matrix E are

1

2
[a−m − ām, a−m+1 − ām−1, . . . , a−1 − ā1]

and

1

2
[a−m − ām, a−m−1 − ām+1, . . . , a−n+1 − ān−1]

T ,

respectively. By using the unitary matrix

Q =

√
2

2

(

Im ıIm

Jm −ıJm

)

, (2.1)

we have the following equalities:

Q∗HQ =

(

Re(B + JmC) −Im(B + JmC)

Im(B − JmC) Re(B − JmC)

)

:=

[

Ĥ11 Ĥ12

Ĥ12 Ĥ22

]

= Ĥ,

Q∗SQ = ı

(

Im(D + JmE) Re(D + JmE)

−Re(D− JmE) Im(D − JmE)

)

:= ı

[

Ŝ11 Ŝ12

Ŝ12 Ŝ22

]

= ıŜ.
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Evidently, Ĥ and Ŝ are real matrices satisfying ĤT = Ĥ and ŜT = Ŝ, as

−[Im(B + JmC)]T = Im(B − JmC), [Re(D + JmE)]T = −Re(D− JmE).

Let

Â = Q∗AQ, x̂ = Q∗x, b̂ = Q∗b.

Then the linear system (1.1) is equivalent to

Âx̂ = b̂. (2.2)

From the above analysis, we observe that

Re(Â) = Ĥ, Im(Â) = Ŝ,

and the matrix Â possesses the Hermitian and skew-Hermitian splitting

Â = Re(Â) + ıIm(Â).

Moreover, the real and the imaginary parts of Â are real symmetric. Note that

Â =

(

Re(B + JmC) + ıIm(D + JmE) −Im(B + JmC) + ıRe(D + JmE)

Im(B − JmC)− ıRe(D − JmE) Re(B − JmC) + ıIm(D − JmE)

)

:=

(

Â11 Â12

Â21 Â22

)

,

with

ÂT
11 = Â11, ÂT

22 = Â22, ÂT
12 = Â21.

Then the linear system (2.2) has a complex symmetric coefficient matrix Â.

(b) When n = 2m+ 1, the matrices H and S can be partitioned into the following forms:

H =





B Jmr̄ C∗

rT Jm Re(a0) r∗

C r B





and

S =





D −Jmz̄ −E∗

zTJm ıIm(a0) −z∗

E z D



 .

Define a unitary matrix

Q =

√
2

2





Im 0 ıIm

0
√
2 0

Jm 0 −ıJm



 .

Then it holds that

Q∗HQ =





Re(B + JmC)
√
2JmRe(r) −Im(B + JmC)√

2Re(rT )Jm Re(a0) −
√
2Im(rT )Jm

Im(B − JmC) −
√
2JmIm(r) Re(B − JmC)



 := H̃
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and

Q∗SQ = ı





Im(D + JmE)
√
2JmIm(z) Re(D + JmE)√

2Im(zT )Jm Im(a0)
√
2Rm(zT )Jm

−Re(D − JmE)
√
2JmRe(z) Im(D − JmE)



 := ıS̃.

Hence, a linear system analogous to (2.2) can be obtained, too.

3. The Structured MHSS Iteration Method

In this section, a structured MHSS iteration method for solving the linear system (1.1) is

proposed based on the MHSS iteration method. For convenience, we only describe the case of

n = 2m, as the case n = 2m+ 1 can be treated in an analogous fashion. Based on the real and

the imaginary parts, the matrix Â can be written as

Â = Re(Â) + ıIm(Â).

We assume that Re(Â) is positive definite and Im(Â) is positive semidefinite, respectively.

In fact, after transforming the Toeplitz linear system into the complex symmetric linear

system, we use MHSS iteration method to solve the linear system (2.2). This leads to the so-

called structured MHSS iteration method for the linear system (1.1), which is algorithmically

described as follows.

The Structured MHSS Iteration Method. Given a starting guess x(0) ∈ C
n, let

x̂(0) = Q∗x(0), compute x̂(k+1) for k = 0, 1, 2, . . ., using the following iteration scheme until

{x̂(k)} converges:

Step 1: Compute x̂(k+ 1

2
) = ((x̂

(k+ 1

2
)

1 )T , (x̂
(k+ 1

2
)

2 )T )T by

(αI +H11 −H12(αI +H22)
−1H12)x̂

(k+ 1

2
)

1 = (αI − ıS11 + ıH12(αI +H22)
−1S21)x̂

(k)
1

−(ıS12 +H12(αI +H22)
−1(αI − ıS12))x̂

(k)
2 −H12(αI +H22)

−1b̂2 + b̂1,

(αI +H22)x̂
(k+ 1

2
)

2 = −H12x̂
(k+ 1

2
)

1 − ıS21x̂
(k)
1 + (αI − ıS22)x̂

(k)
2 + b̂2;

Step 2: Compute x̂(k) = ((x̂
(k)
1 )T , (x̂

(k)
2 )T )T by

(αI + ıS11 − S12(αI + S22)
−1S12)x̂

(k+1)
1 = (αI + ıH11 − ıS12(αI + S22)

−1H12)x̂
(k+ 1

2
)

1

+(ıH12 − S12(αI + S22)
−1(αI + ıH22))x̂

(k+ 1

2
)

2 − ıb̂1 + ıS12(αI + S22)
−1b̂2,

(αI + S22))x̂
(k+1)
2 = −S12x̂

(k+1)
1 + ıH12x̂

(k+ 1

2
)

1 + (αI + ıH22)x̂
(k+ 1

2
)

2 − ıb̂2;

Step 3: Compute x(k+1) by

x(k+1) = Qx̂(k+1),

where α is a given positive constant, b̂i ∈ C
m(i = 1, 2), b̂ = (b̂T1 , b̂

T
2 )

T .

Evidently, at each iteration of the structured MHSS iteration method we need to solve

two linear sub-systems with coefficient matrices αI + Re(Â) and αI + Im(Â). Under our

assumptions, both of these matrices are real, symmetric and positive definite for all α > 0.

According to the MHSS iteration method for the new system (2.2), it leads to the MHSS

preconditioner B̂(α), for the matrix Â, here

B̂(α) =
1 + ı

2α
(αI + Ĥ)(αI + Ŝ).

Now, let us analyze the convergence of the structured MHSS iteration method.
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Theorem 3.1. Let the Toeplitz matrix A ∈ C
n×n be positive definite, H = 1

2 (A + A∗), S =
1
2 (A−A∗), and −ıS be positive semidefinite. Then the iteration matrix M(α) of the structured

MHSS iteration method is given by

M(α) = (αI − ıS)−1(αI + ıH)(αI +H)−1(αI − S).

The spectral radius ρ(M(α)) of M(α) is bounded by

δ(α) = max
λi∈λ(H)

√

α2 + λ2
i

α+ λi

.

Therefore, for any given parameter α > 0, it holds that

ρ(M(α)) ≤ δ(α) < 1,

i.e., the structured MHSS iteration method converges unconditionally to the unique solution of

the system of linear equations (1.1).

Proof. Let

M̂(α) = Q(αI + Im(Â))−1(αI + ıRe(Â))(αI +Re(Â))−1(αI − ıIm(Â))Q∗.

where the matrix Q is defined as in (2.1), and Â = Q∗AQ. Then

M(α) = M̂(α).

Assume

U(α) = (αI + ıRe(Â))(αI +Re(Â))−1,

V (α) = (αI − ıIm(Â))(αI + Im(Â))−1.

Then by using the similarity invariance of the matrix spectrum, we get

ρ(M(α)) = ρ(M̂(α)) ≤ ‖(U(α)V (α))‖2 ≤ ‖U(α)‖2‖V (α)‖2.

Notice that Re(Â) and Im(Â) are real symmetric matrices. So the eigenvalues of Re(Â) and

Im(Â) are real numbers. Hence, we get

‖U(α)‖2 = max
λi∈λ(Re(Â))

√

α2 + λ2
i

|α+ λi|
,

‖V (α)‖2 = max
µi∈µ(Im(Â))

√

α2 + µ2
i

|α+ µi|
.

Because

λi > 0, µi ≥ 0,

we easily see that

‖U(α)‖2 < 1, ‖V (α)‖2 ≤ 1.

Therefore,

ρ(M(α)) ≤ ‖U(α)‖2‖V (α)‖2 ≤ ‖U(α)‖2 = δ(α) < 1.



64 F. CHEN, Y.L. JIANG AND Q.Q. LIU

This completes the proof of the theorem. �

Theorem 3.1 shows that the convergence speed of the structured MHSS iteration method

is bounded by δ(α), which depends on the spectrum of the Hermitian part H , but does not

depend on the eigenvectors of other matrices involved. In the following, we give the optimal

choice for the parameter α, which minimizes the upper bound δ(α).

Corollary 3.1. Let the conditions of Theorem 3.1 be satisfied. Let λmin and λmax be the

minimal and the maximal eigenvalues of the Hermitian positive definite matrix H, respectively.

Then

α⋆ =
√

λminλmax

and

δ(α⋆) =

√
λmin + λmax√
λmin +

√
λmax

=

√

κ(H) + 1
√

κ(H) + 1
,

where κ(H) is the spectral condition number of the matrix H.

Proof. We easily see that

δ(α) = max

{

√

α2 + (λmin)2

α+ λmin

,

√

α2 + (λmax)2

α+ λmax

}

.

So the minimal value of the function δ(α) is attained when

√

α2 + (λmin)2

α+ λmin

=

√

α2 + (λmax)2

α+ λmax

.

After solving the above equation, we obtain

α⋆ =
√

λminλmax.

By substituting α⋆ into the formula of δ(α), we get the result. �

4. A Special Case

In this section, we discuss a kind of special Toeplitz linear system Ax = b, where A has the

form

A = W + ıT, (4.1)

where W and T are real symmetric Toeplitz matrices, see [4]. We can use the MHSS iteration

method (1.3) to solve this kind of linear system. We know that the linear sub-systems with the

coefficient matrices αI +W and αI + T need to be solved at each step of the MHSS iteration.

Because these two matrices are still real symmetric Toeplitz ones, we can use the method in [11]

to solve them. We call it the MHSS-based structured iteration method. As αI +W and αI+T

become two-by-two block diagonal matrices with orthogonal transforms, we only need to solve

four smaller linear sub-systems in actual implementations.
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5. Numerical Examples

In this section, we give numerical examples to illustrate the effectiveness of the structured

MHSS iteration methods. In our implementations, all programs are performed in MATLAB

with machine precision 10−16, and terminated when the current residual satisfies

RES =:
||r(k)||2
||r(0)||2

< 10−6,

where r(k) is the residual at the kth iterate. The zero vector is chosen as the initial guess, and

the right-hand side vector b is obtained by b = Al, with l being the vector of all elements 1+ ı.

We know that a Toeplitz matrix is often generated by a 2π-periodic function f(x) in appli-

cations. The function and the elements of the Toeplitz matrix have the relationship

ak =
1

2π

∫ π

−π

f(x)eıkxdx, k = 0,±1, . . . ,±(n− 1),

and ak is called the Fourier coefficients of the function f(x); see [10, 12].

The generating function f(x) in [−π, π] and the spectra of the corresponding matrix have

the following relationship:

(a) when f(x) is a real-valued function, the eigenvalues of the matrix A are real and satisfy

λmin ≤ min f(x) ≤ max f(x) ≤ λmax;

(b) when f(x) is a complex-valued function, the eigenvalues of the matrix A are complex

and satisfy

Re(λ)min ≤ minRe(f(x)) ≤ maxRe(f(x)) ≤ Re(λ)max,

Im(λ)min ≤ min Im(f(x)) ≤ max Im(f(x)) ≤ Im(λ)max,

where λmin and λmax denote the minimal and the maximal eigenvalues of the generated Toeplitz

matrix A, Re(λ)min and Re(λ)max as well as Im(λ)min and Im(λ)max represent the minimal

and the maximal of the real as well as the imaginary parts of the eigenvalue λ, respectively.

Example 5.1. The generating function is given by

f(x) = 22 + x2 + x3.

Table 5.1: Results of the Iteration Methods for Example 5.1.

structured MHSS GMRES

n αopt α
t IT CPU IT CPU

48 [19.21,21.27] 20.91 42 0.002 16 0.004

64 [18.50,18.65] 18.54 43 0.003 18 0.005

96 [16.37,17.72] 17.27 45 0.006 20 0.005

128 [15.72,17.07] 15.80 46 0.010 21 0.006

160 [14.95,17.21] 15.93 47 0.015 23 0.011

192 [14.92,17.00] 16.26 47 0.021 23 0.009

384 [15.68,17.46] 16.28 45 0.124 23 0.016
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In our tests, the experimentally found optimal parameters αopt are obtained according to

the minimal numbers of iteration steps. When these optimal parameters form intervals, we

get the experimentally found optimal parameters αt according to the lest computing times.

Moreover, we compare these iteration methods in the senses of iteration step (denoted as IT)

and CPU time (denotes as CPU).

We use the structured MHSS and the GMRES iteration methods to solve the linear system

generated by the function f(x) in Example 5.1. In Table 5.1, we list the experimentally found

optimal intervals and optimal parameters αt, IT and CPU, with respect to different n. In

Table 5.2, the results of the structured MHSS and Circulant preconditioned GMRES method

are listed. These two iteration methods are abbreviated as SMHSS-GMRES and Cir-GMRES,

respectively.

The numerical results in Tables 5.1 and 5.2 show that the structured MHSS iteration method

cost more iteration steps and computing time than the GMRES method, but as precondition-

ers, the SMHSS-GMRES method outperform the Cir-GMRES method [10] in CPU time and

iteration step. Form Table 5.2, we know that IT and CPU of the SMHSS-GMRES and the

Cir-GMRES methods almost have no change with respect to different n.

Table 5.2: Results of the SMHSS-GMRES and Cir-GMRES Methods for Example 5.1.

SMHSS-GMRES Cir-GMRES

n αopt α
t IT CPU IT CPU

48 [0.01,0.09] 0.07 2 0.001 8 0.003

64 [0.01,0.07] 0.04 2 0.001 8 0.003

96 [0.01,0.07] 0.04 2 0.003 8 0.007

128 [0.01,0.06] 0.05 2 0.004 8 0.014

160 [0.01,0.06] 0.05 2 0.007 9 0.021

192 [0.01,0.07] 0.04 2 0.011 9 0.030

384 [0.01,0.08] 0.05 2 0.056 9 0.149

Table 5.3: Results for Example 5.2.

MHSS MHSS-base

n α
t IT CPU CPU

48 0.26 431 0.023 0.023

64 0.20 562 0.043 0.034

96 0.14 813 0.117 0.088

128 0.11 1060 0.243 0.167

160 0.09 1289 0.434 0.287

192 0.07 1534 0.685 0.402

384 0.04 2732 8.071 2.310

Example 5.2. The generating function is given by

f(x) = x2 + ıx4.

The function of Example 5.2 generates a special Toeplitz matrix which has the structure

shown in (4.1). That is to say, the real and the imaginary parts of the Toeplitz matrix gen-
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erated in Example 5.2 are symmetric Toeplitz matrices, too. We use MHSS and MHSS-based

structured iteration methods to solve the linear system yielded in Example 5.2. According to

our tests, the experimentally found optimal parameters αt and the number of iteration steps

for MHSS and for MHSS-based structured iteration methods are the same.

In Table 5.3, we list the experimentally found optimal parameters αt, and IT and CPU, with

respect to different n. The results in Table 5.3 show that the MHSS-based structured iteration

method costs less CPU time than the MHSS iteration method with respect to different n.
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